Guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), together named (p)ppGpp, regulate diverse aspects of pathogenesis, including synthesis of nutrients, resistance to inflammatory mediators, and expression of secretion systems. In , these nucleotide alarmones are generated by the synthetase activities of RelA and SpoT proteins. In addition, the (p)ppGpp hydrolase activity of the bifunctional SpoT protein is essential to preserve cell viability. The contribution of SpoT to physiology and pathogenesis has proven elusive in organisms such as , because the hydrolytic activity of this elA and poT omologue (RSH) is vital to prevent inhibitory effects of (p)ppGpp produced by a functional RelA. Here, we describe the biochemical and functional characterization of a -Δ mutant strain encoding a SpoT protein that lacks the C-terminal regulatory elements collectively referred to as "ctd." expressing the -Δ variant hydrolyzes (p)ppGpp with similar kinetics to those of wild-type bacteria, but it is defective at synthesizing (p)ppGpp in response to acidic pH. -Δ mutants have virtually normal adaptations to nutritional, nitrosative, and oxidative stresses, but poorly induce metal cation uptake systems and pathogenicity island 2 (SPI-2) genes in response to the acidic pH of the phagosome. Importantly, -Δ mutant replicates poorly intracellularly and is attenuated in a murine model of acute salmonellosis. Collectively, these investigations indicate that (p)ppGpp synthesized by SpoT serves a unique function in the adaptation of to the intracellular environment of host phagocytes that cannot be compensated by the presence of a functional RelA. Pathogenic bacteria experience nutritional challenges during colonization and infection of mammalian hosts. Binding of the alarmone nucleotide guanosine tetraphosphate (ppGpp) to RNA polymerase coordinates metabolic adaptations and virulence gene transcription, increasing the fitness of diverse Gram-positive and Gram-negative bacteria as well as that of actinomycetes. Gammaproteobacteria such as synthesize ppGpp by the combined activities of the closely related RelA and SpoT synthetases. Due to its profound inhibitory effects on growth, ppGpp must be removed; in , this process is catalyzed by the vital hydrolytic activity of the bifunctional SpoT protein. Because SpoT hydrolase activity is essential in cells expressing a functional RelA, we have a very limited understanding of unique roles these two synthetases may assume during interactions of bacterial pathogens with their hosts. We describe here a SpoT truncation mutant that lacks ppGpp synthetase activity and all C-terminal regulatory domains but retains excellent hydrolase activity. Our studies of this mutant reveal that SpoT uniquely senses the acidification of phagosomes, inducing virulence programs that increase fitness in an acute model of infection. Our investigations indicate that the coexistence of RelA/SpoT homologues in a bacterial cell is driven by the need to mount a stringent response to a myriad of physiological and host-specific signatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042702 | PMC |
http://dx.doi.org/10.1128/mBio.03397-19 | DOI Listing |
This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.
View Article and Find Full Text PDFViruses
December 2024
Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan.
This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds and exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153.
View Article and Find Full Text PDFViruses
December 2024
Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.
View Article and Find Full Text PDFViruses
December 2024
Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland.
Bovine viral diarrhea virus (BVDV), a pestivirus in the family , is a major livestock pathogen. Horizontal transmission leads to acute transient infections via the oronasal route, whereas vertical transmission might lead to the birth of immunotolerant, persistently infected animals. In both cases, BVDV exerts an immunosuppressive effect, predisposing infected animals to secondary infections.
View Article and Find Full Text PDFViruses
November 2024
Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.
The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess the enzymatic activity needed to cleave cell surface HS. Our study demonstrates that HSV-2 infection significantly elevates HPSE 2 protein levels, impacting two distinct stages of viral replication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!