Despite the fact that gut microbiota is closely associated with obesity, few studies have focused on the influences of paraprobiotics as food ingredients on both obesity prevention and the gut microbial community. In this study, we evaluated the effects of fragmented CP1563 (CP1563) as a paraprobiotic for obesity prevention and investigated its effects on the gut microbial community in pre-obese subjects. One hundred sixty-nine healthy subjects with a body mass index from 25.0 to 29.9 kg/m ingested beverages with or without the fragmented CP1563 containing 10-hydroxyoctadecanoic acid (10-HOA) for 12 weeks. The changes in abdominal, total, visceral, and subcutaneous fatty areas were significantly lower in the CP1563-10-HOA group than in the placebo group at 12 weeks. Furthermore, 16S rRNA gene sequencing of fecal DNA revealed that the changes in the abundances of the genera and g were significantly greater in the CP1563-10-HOA group than in the placebo group, and the changes in the abundances of the genus was significantly smaller in the CP1563-10HOA group than in the placebo group. Our results showed that continuous ingestion of the fragmented CP1563 containing 10-HOA reduced abdominal body fat and affected the gut microbial community in pre-obese healthy subjects. Our findings may contribute to the understanding of the relationship between the anti-obesity effect of paraprobiotics and gut microbiota.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074956PMC
http://dx.doi.org/10.3390/microorganisms8020304DOI Listing

Publication Analysis

Top Keywords

gut microbial
16
microbial community
16
fragmented cp1563
12
group placebo
12
placebo group
12
pre-obese subjects
8
gut microbiota
8
obesity prevention
8
community pre-obese
8
healthy subjects
8

Similar Publications

Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives.

Gut Microbes

December 2025

Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.

Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.

View Article and Find Full Text PDF

The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.

View Article and Find Full Text PDF

The gut microbiota is unanimously acknowledged as playing a central role in human health, notably through the production of various metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health itself, these microbial metabolites significantly impact multiple organ systems by participating in key signaling pathways along the well documented gut-organ axes. Chemicals ingested through food might interact with our gut microbiota, altering metabolites production with consequences on health.

View Article and Find Full Text PDF

Purpose: To study the potential of a candidate probiotic strain belonging to the Enterococcus durans species in alleviating hypercholesterolemia and improving the microbial milieu of rat gut.

Methods: A previously isolated and characterized E. durans strain NPL 1334 was further screened in vitro for its bile salt hydrolyzation and cholesterol assimilation ability.

View Article and Find Full Text PDF

Bacterial indole-3-propionic acid inhibits macrophage IL-1β production through targeting methionine metabolism.

Sci China Life Sci

January 2025

State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.

The gut microbiota plays key roles in host health by shaping the host immune responses through their metabolites, like indole derivatives from tryptophan. However, the direct role of these indole derivatives in macrophage fate decision and the underlying mechanism remains unknown. Here, we found that bacterial indole-3-propionic acid (IPA) downregulates interleukin-1beta (IL-1β) production in M1 macrophages through inhibition of nuclear factor-kappa B (NF-κB) signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!