Ethylene response factors (ERFs) are involved in the regulation of plant responses to biotic and abiotic stresses. Here we provide evidence for a role of ERF96, a member of the ERF transcription factor group IX, in selenite tolerance in Arabidopsis. ERF96 gene was rapidly up-regulated in response to selenite stress. Overexpression of ERF96 enhanced Arabidopsis resistance to selenite stress, while ERF96-silenced plants demonstrated wild-type (WT) resistance to selenite. In addition, the overexpression plants had significantly lower selenium (Se) content in shoots when subjected to selenite stress. Further investigation indicated that overexpression of ERF96 reduced transcript levels of selenite/phosphate transporters PHT1;1 and PHT2;1, which influenced Arabidopsis Se uptake and allocation in the presence of selenite. Moreover, our experiments showed that overexpression of ERF96 enhanced Arabidopsis antioxidant activity. Under selenite stress, ERF96-overexpressing lines exhibited the significant increases in catalase (CAT) and glutathione peroxidase (GPX) activities as well as the glutathione (GSH) content, while had a decrease in reactive oxygen species (ROS) accumulation compared to WT. Taken together, our results demonstrate that ERF96 plays a positive role in the regulation of selenite tolerance in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2020.02.024 | DOI Listing |
J Pineal Res
January 2025
Shenyang Agricultural University, Shenyang, Liaoning, China.
Selenium has the function of bio-stimulating hormone. However, the underlying physiological and molecular mechanisms of melatonin and abscisic acid as secondary messengers in improving cold tolerance by selenium are limited. This study investigated the effects of selenite on the cold stress of cucumber seedlings.
View Article and Find Full Text PDFMicroorganisms
November 2024
Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China.
Soil microbial communities are particularly sensitive to selenium contamination, which has seriously affected the stability of soil ecological environment and function. In this study, we applied high-throughput 16S rRNA gene sequencing to examine the effects of low and high doses of sodium selenite and the selenite-degrading bacterium, PM1, on soil bacterial community composition, diversity, and assembly processes under controlled laboratory conditions. Our results indicated that sodium selenite and strain PM1 were key predictors of bacterial community structure in selenium-contaminated soils.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China. Electronic address:
The removal of selenite (Se(IV)) and cadmium (Cd(II)) from low-carbon wastewater presents significant challenges. However, the addition of external organic carbon sources is limited in application due to the high cost and potential for secondary pollution. This study introduced a "hibernation-like microbial survival strategy", enabling efficient removal of Se(IV) and Cd(II) in sulfur autotrophic reactor, with S acting as the electron donor.
View Article and Find Full Text PDFPhotosynthetica
March 2024
College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China.
The effects of selenite (0, 15, 30, 45 mg L) on physiological characteristics and medicinal components of were analyzed. The results showed that selenite application promoted the activity of superoxide dismutase and the contents of soluble sugar, proline, carotenoids, total flavonoids, and total polyphenols, and decreased the contents of reactive oxygen species, relative electrical conductivity, and malondialdehyde. In addition, selenite also increased chlorophyll content, improved electron transfer ability, PSI and PSII performance, and the coordination between PSI and PSII, which significantly improved photosynthetic capacity.
View Article and Find Full Text PDFPhotosynthetica
July 2024
Henan Institute of Science and Technology, 453003 Xinxiang, China.
Cadmium stress (CS) induced the peroxide damage and inhibited wheat photosynthetic capacity and growth. Compared to CS, selenium (Se) application plus CS bolstered chlorophyll and carotenoid contents, photosynthetic rate, the maximum photochemical efficiency of PSII, the quantum yield of PSII photochemistry, and photochemical quenching, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, L-galactono-1,4-lactone dehydrogenase, and gamma-glutamylcysteine synthetase activities, ascorbic acid and glutathione contents, AsA/dehydroascorbic acid and GSH/oxidized glutathione, and decreased nonphotochemical quenching (q), antioxidant biomarkers malondialdehyde and hydrogen peroxide contents, and electrolyte leakage (EL). At the same time, Se alone declined antioxidant biomarkers contents, q and EL, and augmented the rest of the aforementioned indexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!