A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effluent recirculation enables near-complete oxidation of organics during supercritical water oxidation at mild conditions: A proof of principle. | LitMetric

Effluent recirculation enables near-complete oxidation of organics during supercritical water oxidation at mild conditions: A proof of principle.

Chemosphere

Thermochemical Conversion of Biomass Research Group, Ghent University, Coupure Links 653, 9000, Ghent, Belgium. Electronic address:

Published: July 2020

This work presents a continuous set-up for SCWO, which was operated at mild conditions (380 °C, 25 MPa, oxidant equivalence ratio of 2.0 and residence time of 26 s) to oxidize cellulose, lignin, and acetic acid as model compounds. The aim was to oxidize different organics consecutively to near completion in the same mild reaction conditions and set-up. These conditions can overcome some drawbacks associated to SCWO. To combine near complete oxidation with the applied mild process conditions, aqueous effluent from SCWO, containing intermediates from incomplete oxidation, was recycled for consecutive oxidation. Meanwhile, fresh feedstock was continuously fed to retain the process capacity. Upon recycling the aqueous effluent three to four times, depending on the feedstock, the oxidation efficiency increased from 63.9%, 45.3% and 28.3% in a single pass for cellulose, lignin, and acetic acid, respectively, to near 100%. The principle of effluent recirculation should allow a compact set-up to perform almost complete oxidation of different organics at mild conditions. The principles and effects of effluent recirculation are outlined, as well as practical consequences and perspectives of this novel principle to SCWO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.126213DOI Listing

Publication Analysis

Top Keywords

effluent recirculation
12
mild conditions
12
oxidation organics
8
cellulose lignin
8
lignin acetic
8
acetic acid
8
complete oxidation
8
aqueous effluent
8
oxidation
7
conditions
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!