Disinhibition of sensory cortex in patients with amyotrophic lateral sclerosis.

Neurosci Lett

Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neurosciences Salzburg, Salzburg, Austria; University for Medical Informatics and Health Technology, UMIT, Hall in Tirol, Austria.

Published: March 2020

In patients with amyotrophic lateral sclerosis (ALS) a motor cortical hyperexcitability has been reported in transcranial magnetic stimulation studies, but little is known about the neuronal excitability in other cortical areas. The aim of the present study was the functional evaluation of the sensory cortex in subjects with ALS by assessing the high-frequency somatosensory evoked potentials (HF-SEP). No significant HF-SEP abnormalities were observed in ALS patients with disease duration of <2 years, while the patients with a disease duration of>2 years we found a large amplitude reduction of post-synaptic HF-SEP burst. Since post-synaptic burst of HF-SEP is thought to reflect the activity of cortical inhibitory interneurons, our findings provide further evidence that disinhibition is a primary characteristic of ALS that also involves the somatosensory cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2020.134860DOI Listing

Publication Analysis

Top Keywords

sensory cortex
8
patients amyotrophic
8
amyotrophic lateral
8
lateral sclerosis
8
disinhibition sensory
4
cortex patients
4
sclerosis patients
4
als
4
sclerosis als
4
als motor
4

Similar Publications

Introduction: Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.

View Article and Find Full Text PDF

The effects of estrogen depletion in female rats: differential influences on somato-motor and sensory cortices.

Biogerontology

January 2025

Department of Anatomy, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhongyang Rd., Hualien, 970374, Taiwan.

Aging women experience a significant decline of ovarian hormones, particularly estrogen, following menopause, and become susceptible to cognitive and psychomotor deficits. Although the effects of estrogen depletion had been documented in the prefrontal and somatosensory cortices, its impact on somatomotor cortex, a region crucial for motor and cognitive functions, remains unclear. To explore this, we ovariectomized young adult female rats and fed subsequently with phytoestrogen-free diet and studied the effects of estrogen depletion on the somato-sensory and motor cortices.

View Article and Find Full Text PDF

Objective: Epilepsy is considered as a network disorder of interacting brain regions. The propagation of local epileptic activity from the seizure onset zone (SOZ) along neuronal networks determines the semiology of seizures. However, in highly interconnected brain regions such as the insula, the association between the SOZ and semiology is blurred necessitating invasive stereoelectroencephalography (SEEG).

View Article and Find Full Text PDF

Auditory processing in the cerebral cortex is considered to begin with thalamocortical inputs to layer 4 (L4) of the primary auditory cortex (A1). In this canonical model, A1 L4 inputs initiate a hierarchical cascade, with higher-order cortices receiving pre-processed information for the slower integration of complex sounds. Here, we identify alternative ascending pathways in mice that bypass A1 and directly reach multiple layers of the secondary auditory cortex (A2), indicating parallel activation of these areas alongside sequential information processing.

View Article and Find Full Text PDF

Circuit dysfunction in autism may involve a failure of homeostatic plasticity. To test this, we studied parvalbumin (PV) interneurons which exhibit rapid homeostatic plasticity of intrinsic excitability following whisker deprivation in mouse somatosensory cortex. Brief deprivation reduces PV excitability by increasing Kv1 current to increase PV spike threshold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!