Innovation in the food industry using microbial transglutaminase: Keys to success and future prospects.

Anal Biochem

Institute of Food Science & Technologies, Ajinomoto Co., Inc., 1-1 Suzukicho, Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan. Electronic address:

Published: May 2020

Transglutaminase (TG) catalyzes cross-linking between the γ-carboxyamide groups of glutamine residues and the ε-amino groups of lysine residues in polypeptide chains, yielding ε- (γ-glutamyl) lysine (G-L) bonds. By forming a network structure in the protein via G-L bonds, it is possible to increase the viscosity of protein solutions or to cause gelation. Nearly thirty years have passed since microbial TG (MTG) appeared in the food enzyme market. Since the start of research and development, MTG has been used in fishery products such as kamaboko (boiled fish paste), meat products such as sausages, milk products such as yogurt, processed-soybean products such as tofu, and wheat products such as bread and noodles. MTG has provided effects such as adding new functions and reducing waste in food applications. The purpose of this review is to describe not only the history of research and development of TG but also the key aspects that have facilitated the great success of this process as a technology for enzymatically modifying protein-containing foods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2020.113638DOI Listing

Publication Analysis

Top Keywords

g-l bonds
8
products
5
innovation food
4
food industry
4
industry microbial
4
microbial transglutaminase
4
transglutaminase keys
4
keys success
4
success future
4
future prospects
4

Similar Publications

In this research, tartaric acid was used to enhance the hydroxyapatite coating on AZ31 Mg alloy substrate through post-treatment and direct addition methods, and the corrosion resistance and biological activity of the samples were investigated. The parameters of concentration, immersion time, and pH of the coating solution were optimized by Electrochemical Impedance Spectroscopy (EIS) and Direct Current (DC) Polarization techniques. According to EIS results in the post-treatment method, tartaric acid with a concentration of 1 g/L, pH = 9 and immersion time of 2 min, increased the corrosion resistance of hydroxyapatite coating from 3630 to about 18,763 Ω.

View Article and Find Full Text PDF

Recycling of protein-rich environmental wastes and obtaining more valuable products from these recycled products is a topic of interest for researchers. This study aims to produce, purify, and characterize the physicochemical and structural properties of the protease enzyme produced from Brevibacillus agri SAR25 using salmon fish waste as substrate and also to evaluate the effect of protease on the chicken feather, enzyme-ligand interactions, and active site surface area. The production of protease was optimum on 50 g/L fish waste, pH 8, 40 °C, 96 h, and 150 rpm.

View Article and Find Full Text PDF

The reaction between molybdenum(ii) acetate and 5-aminoisophthalic acid (HIso-NH) afforded [MoO(μ-O)(Iso-NH)], a novel molybdenum(v) metal-organic polyhedron (MOP) with a triangular antiprismatic shape stabilized by intramolecular N-H⋯O hydrogen bonds. The synthesis conditions, particularly the choice of solvent and reaction time, led to the precipitation of the Mo(v)-MOP in five distinct crystalline forms. These forms vary in their packing arrangements, co-crystallized solvent molecules, and counter-cations, with three phases containing dimethylammonium (dma) and the other two containing diethylammonium (dea).

View Article and Find Full Text PDF

Wastewater contamination by organic dyes, especially Rhodamine B (RhB), possess a significant environmental challenge. This study explores a novel bio sorbent for the removal of RhB dye from contaminated water, using chitosan trisodium citrate-modified magnetic nanoparticles (Fe₃O₄@CSTSC@PANI) coated with polyaniline. The nanocomposite was characterized by FT-IR, XRD, HRTEM, SEM, BET surface analysis.

View Article and Find Full Text PDF

Microwave catalytic treatment using magnetically separable CoFeO spinel catalyst for high-rate degradation of malachite green dye.

J Environ Manage

January 2025

Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:

The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!