As one of the flow-based passive sorting, the hydrodynamic filtration using a microfluidic-chip has shown to effectively separate into different sizes of subpopulations from cell or particle suspensions. Its model framework involving two-phase Newtonian or generalized Newtonian fluid (GNF) was developed, by performing the complete analysis of laminar flow and complicated networks of main and multiple branch channels. To predict rigorously what occurs in flow fields, we estimated pressure drop, velocity profile, and the ratio of the flow fraction at each branch point, in which the analytical model was validated with numerical flow simulations. As a model fluid of the GNF, polysaccharide solution based on Carreau type was examined. The objective parameters aiming practical channel design include the number of the branches and the length of narrow section of each branch for arbitrary conditions. The flow fraction and the number of branches are distinctly affected by the viscosity ratio between feed and side flows. As the side flow becomes more viscous, the flow fraction increases but the number of branches decreases, which enables a compact chip designed with fewer branches being operated under the same throughput. Hence, our rational design analysis indicates the significance of constitutive properties of each stream.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201900394DOI Listing

Publication Analysis

Top Keywords

flow fraction
12
number branches
12
hydrodynamic filtration
8
cell particle
8
fluid gnf
8
flow
7
two-phase flow
4
flow microfluidic-chip
4
microfluidic-chip design
4
design hydrodynamic
4

Similar Publications

In this research, poly(lactic acid) (PLA) nanocomposites with multi-walled carbon nanotubes (MWCNT) were produced by extrusion, injection, and compression molding, focusing on electromagnetic shielding. Various amounts of carbon nanotubes (MWCNTs) were tested in PLA matrix, specifically ranging from 1 to 4 parts per hundred resin (phr). The resulting nanocomposites were analyzed before and after undergoing annealing heat treatment.

View Article and Find Full Text PDF

The microstructure of metallic materials plays a crucial role in determining their performance. In order to accurately predict the dynamic recrystallization (DRX) behavior and microstructural evolution during the hot deformation process of GCr15 bearing steel, a microstructural evolution model for the DRX process of GCr15 steel was established by combining the level set (LS) method with the Yoshie-Laasraoui-Jonas dislocation dynamics model. Firstly, hot compression tests were conducted on GCr15 steel using the Gleeble-1500D thermal simulator, and the hardening coefficient and dynamic recovery coefficient of the Yoshie-Laasraoui-Jonas model were derived from the experimental flow stress data.

View Article and Find Full Text PDF

This study analyzes the impact of slip-dependent zeta potential on the heat transfer characteristics of nanofluids in cylindrical microchannels with consideration of thermal radiation effects. An analytical model is developed, accounting for the coupling between surface potential and interfacial slip. The linearized Poisson-Boltzmann equation, along with the momentum and energy conservation equations, is solved analytically to obtain the electrical potential field, velocity field, temperature distribution, and Nusselt number for both slip-dependent (SD) and slip-independent (SI) zeta potentials.

View Article and Find Full Text PDF

: Diffuse myocardial fibrosis and altered deformation are relevant prognostic factors in aortic stenosis (AS) patients. The aim of this exploratory study was to investigate the relationship between myocardial strain, and myocardial extracellular volume (ECV) in patients with severe AS with a photon-counting detector (PCD)-CT. : We retrospectively included 77 patients with severe AS undergoing PCD-CT imaging for transcatheter aortic valve replacement (TAVR) planning between January 2022 and May 2024 with a protocol including a non-contrast cardiac scan, an ECG-gated helical coronary CT angiography (CCTA), and a cardiac late enhancement scan.

View Article and Find Full Text PDF

This study sought to explore the clinical factors associated with classical low-flow low-gradient (C-LFLG) and normal-flow low-gradient (NFLG) aortic stenosis (AS) compared to high-gradient (HG) AS. We also compared clinical and echocardiographic outcomes after transcatheter aortic valve replacement (TAVR) across flow-gradient patterns. Patients with C-LFLG AS have a higher mortality rate after TAVR than those with HG AS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!