Assessment of a W:BiVO-CuBiOTandem Photoelectrochemical Cell for Overall Solar Water Splitting.

ACS Appl Mater Interfaces

Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.

Published: March 2020

We assess a tandem photoelectrochemical cell consisting of a W:BiVO photoanode top absorber and a CuBiO photocathode bottom absorber for overall solar water splitting. We show that the W:BiVO photoanode oxidizes water and produces oxygen at potentials ≥0.7 V vs RHE when CoPi is added as a cocatalyst. However, the CuBiO photocathode does not produce a detectable amount of hydrogen from water reduction even when Pt or RuO is added as a cocatalyst because the photocurrent primarily goes toward photocorrosion of CuBiO rather than proton reduction. Protecting the CuBiO photocathode with a CdS/TiO heterojunction and adding RuO as a cocatalyst prevents photocorrosion and allows for photoelectrochemical production of hydrogen at potentials ≤0.3 V vs RHE. A tandem photoelectrochemical cell composed of a W:BiVO/CoPi photoanode and a CuBiO/CdS/TiO/RuO photocathode produces hydrogen which can be detected under illumination at an applied bias of ≥0.4 V. Since the valence band of BiVO and conduction band of CuBiO are adequately positioned to oxidize water and reduce protons, we hypothesize that the applied bias is required to overcome the relatively low photovoltages of the photoelectrodes, that is, the relatively low quasi-Fermi level splitting within BiVO and CuBiO. This work is the first experimental demonstration of hydrogen production from a BiVO-CuBiO-based tandem cell and it provides important insights into the significance of photovoltage in tandem devices for overall water splitting, especially for cells containing CuBiO photocathodes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c00696DOI Listing

Publication Analysis

Top Keywords

photoelectrochemical cell
12
water splitting
12
cubio photocathode
12
solar water
8
tandem photoelectrochemical
8
wbivo photoanode
8
ruo cocatalyst
8
applied bias
8
cubio
7
water
6

Similar Publications

Bioelectronic and photogenerated electron synergistic catalyzed removal of chlorhexidine: Degradation and mechanism.

J Hazard Mater

January 2025

College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087,  China; National University of Singapore, Department of Civil and Environmental Engineering, 1 Engineering Drive 2, 117576, Singapore. Electronic address:

The extensive use of the antimicrobial compound chlorhexidine (CHD) has emerged as a significant threat to both the ecological environment and human health. To address this concern, a photo-electrochemical cell-microbial fuel cell (PMFC) system was studied for CHD removal by incorporating, for the first time, the photocatalysts black phosphorus/carbon nitride (BPCN) and CuO into the bioanode and air cathode of an MFC, respectively. By combining electrochemical, macro-genomic, and intermediate product analyses, the underlying mechanisms of bioelectronic and photoelectronic synergies were elucidated.

View Article and Find Full Text PDF

Herein, we discuss the idea that fluorescent materials/molecules should logically show potential photoelectrochemistry (PEC) activity, and, in particular, the PEC of fluorescent small molecules (previously usually acting only as dye sensitizers for conventional semiconductors) is explored. After examining the PEC activities of some typical inorganic or organic fluorescent materials/molecules and by adopting methyl violet (MV) with the highest PEC activity among the examined fluorescent small molecules, a new and efficient (MV/Au nanoparticles (AuNPs))/fluorine-doped tin oxide (FTO) photoanode without conventional semiconductor(s) is prepared by layer-by-layer alternating the electrodeposition of AuNPs and the adsorption of MV. A bilirubin oxidase (BOD)/CuCoO/FTO bio-photocathode is prepared by electrodeposition, calcination and cast-coating.

View Article and Find Full Text PDF

The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.

View Article and Find Full Text PDF

Chalcogenide-based thin-film solar cell optimized for rear illumination and used for CO2 reduction is presented. Central to this innovation is a thinner, Cu(In,Ga)S2 chalcopyrite absorber coated with a robust metallic top layer, which potentially surpasses the performance of conventional front-illuminated designs. Using cobalt quaterpyridine molecular catalyst, photocurrent densities for CO2 reduction exceeding 10 mA/cm2 at 0.

View Article and Find Full Text PDF

Bio-inspired Catalyst-Modified Photocathode for Bias-Free Photoelectrochemical NADH Regeneration.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China.

Cofactors such as nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH) play a crucial role in natural enzyme-catalyzed reactions for the synthesis of chemicals. However, the stoichiometric supply of NADH for artificial synthetic processes is uneconomical. Here, inspired by the process of cofactor NADPH regeneration in photosystem I (PSI), catalyst-modified photocathodes are constructed on the surface of polythiophene-based semiconductors (PTTH) via self-assembly for photoelectrochemical catalytic NADH regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!