Background: Accounting for mortality nearly one in four of human and second highest leading cause of death worldwide. Every year, about 10 million new cancers are diagnosed and causing major health issues in both developing and developed countries.
Methods: A series of new dihydrazones were synthesized and screened for in vitro anticancer activity against three different MDA-MB-231, A546 and MCF7 cell lines and validated by DNA binding and molecular docking approaches.
Result: In the present investigations, synthesized compounds 21, 22, 23 and 24 exhibited potent anticancer activity against tested cancer cell lines and DNA binding study using methyl green comparing to Doxorubicin and ethidium bromide as a positive control respectively.
Conclusion: The Structure Activity Relationship (SAR) showed that the electron withdrawing groups (-Cl, -NO2, - F, and -Br) favored the DNA binding studies and anticancer activity whereas, electron donating groups (-OH and - OCH3) showed moderate activity. In the molecular docking study, binding interactions of the most active compounds 21, 22, 23 and 24 stacked with A-T rich regions of the DNA minor groove by surface binding interactions were confirmed. Further, the tuning of active analogs for targeted therapy was warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871520620666200225104558 | DOI Listing |
Clin Epigenetics
December 2024
Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
Background: Lynch syndrome (LS), characterised by an increased risk for cancer, is mainly caused by germline pathogenic variants affecting a mismatch repair gene (MLH1, MSH2, MSH6, PMS2). Occasionally, LS may be caused by constitutional MLH1 epimutation (CME) characterised by soma-wide methylation of one allele of the MLH1 promoter. Most of these are "primary" epimutations, arising de novo without any apparent underlying cis-genetic cause, and are reversible between generations.
View Article and Find Full Text PDFIn Vivo
December 2024
Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan;
Background/aim: Immune checkpoint blockade has achieved great success as a targeted immunotherapy for solid cancers. However, small molecules that inhibit programmed death 1/programmed death ligand 1 (PD-1/PD-L1) binding are still being developed and have several advantages, such as high bioavailability. Previously, we reported a novel PD-1/PD-L1-inhibiting small compound, SCL-1, which showed potent antitumor effects on PD-L1 tumors.
View Article and Find Full Text PDFIn Vivo
December 2024
Graduate Program for Bio-health/Innovative Drug Development using Subtropical Bio-Resources, Jeju National University, Jeju, Republic of Korea;
Background/aim: Breast cancer stem cells (BCSCs) are a subpopulation of tumor cells that play a role in therapeutic resistance. In this study, we demonstrated that sertaconazole, an antifungal agent, displayed a potent inhibition on cancer stem cells (CSCs) and investigated the mechanism of action involved in its anti-BCSC effect.
Materials And Methods: The effect of sertaconazole on BCSCs was investigated using a mammosphere formation assay, a colony formation assay, and a cell migration assay.
Biosens Bioelectron
December 2024
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China. Electronic address:
"One-pot" assays which combine amplification with CRISPR/Cas12a system are in constant attracted for biosensors development. Herein, we present a one-pot isothermal assay that Ligation-recognition triggered Recombinase Polymerase Amplification (RPA)-CRISPR/Cas12a cis-cleavage (LRPA-CRISPR) fluorescent biosensor for sensitive, specific, and label-free miRNA detection. Firstly, we reveal the programmed double-stranded DNA amplicons, which utilized the ligation-recognition and polymerization to form and amplified by the RPA system.
View Article and Find Full Text PDFJ Med Virol
January 2025
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
Multinucleated cells are present in lung tissues of patients infected by SARS-CoV-2. Although the spike protein can cause the fusion of infected cells and ACE2-expressing cells to form syncytia and induce damage, how host cell responses to this damage and the role of DNA damage response (DDR) signals in cell fusion are still unclear. Therefore, we investigated the effect of SARS-CoV-2 spike protein on the fusion of homologous and heterologous cells expressing ACE2 in vitro models, focusing on the protein levels of ATR and ATM, the major kinases responding to DNA damage, and their substrates CHK1 and CHK2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!