The internal dynamics of a 2-chloromalonaldehyde (2-ClMA) molecule, possessing a strong internal hydrogen bond (IHB), was examined by means of matrix isolation spectroscopy in a soft host: para-hydrogen (pH). 2-ClMA is a chlorinated derivative of malonaldehyde (MA), a model molecule in hydrogen transfer studies, better suited to low temperature experiments than its parent molecule. The infrared absorption spectra of 2-ClMA isolated in pH exhibit temperature dependent structures which are explained as transitions occurring from split vibrational levels induced by hydrogen tunneling. The doublet components associated with higher and lower energy levels are changing reversibly with the increase/decrease of the matrix temperature. The ground state splitting is measured to be 7.9 ± 0.1 cm. The presence of oH impurities in the pH matrix close to the neighborhood of the 2-ClMA molecule is found to quench the H tunneling. The data provide a powerful insight into the dynamical picture of intramolecular hydrogen tunneling in a molecule embedded in a very weakly perturbing environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp06866j | DOI Listing |
Nanoscale
January 2025
Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland.
The strong influence of surface adsorbates on the morphology of a catalyst is exemplified by studying a silver surface with and without deposited zinc oxide nanoparticles upon exposure to reaction gases used for carbon dioxide hydrogenation. Ambient pressure X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements indicate accumulation of carbon deposits on the catalyst surface at 200 °C. While oxygen-free carbon species observed on pure silver show a strong interaction and decorate the atomic steps on the catalyst surface, this decoration is not observed for the oxygen-containing species observed on the silver surface with additional zinc oxide nanoparticles.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, New York University, New York, New York 10003, USA.
The water trimer, as the smallest water cluster in which the three-body interactions can manifest, is arguably the most important hydrogen-bonded trimer. Accurate, fully coupled quantum treatment of its excited intermolecular vibrations has long been an elusive goal. Here, we present the methodology that for the first time allows rigorous twelve-dimensional (12D) quantum calculation of the intermolecular vibration-tunneling eigenstates of the water trimer, with the monomers treated as rigid.
View Article and Find Full Text PDFiScience
January 2025
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
Lignin valorization is crucial for achieving economic and sustainable biorefinery processes. However, the enzyme substrate preferences involved in lignin degradation remain poorly understood, and low activity toward specific substrates presents a significant challenge to the efficient utilization of lignin. In this study, we investigated the substrate promiscuity of Ado, a key enzyme involved in lignin valorization.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
The effect of solution pH on the formation and surface structure of 2-pyrazinethiolate (2-PyzS) self-assembled monolayers (SAMs) formed by the adsorption of 2-mercaptopyrazine (2-PyzSH) on Au(111) was investigated using scanning tunneling microscopy (STM) and X-ray photoelectron microscopy (XPS). Molecular-scale STM observations clearly revealed that 2-PyzS SAMs at pH 2 had a short-range ordered phase of (2√3 × √21)R30° structure with a standing-up adsorption structure. However, 2-PyzS SAMs at pH 8 had a very unique long-range ordered phase, showing a "ladder-like molecular arrangement" with bright repeating rows.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland.
Flat bands in Kagome graphene might host strong electron correlations and frustrated magnetism upon electronic doping. However, the porous nature of Kagome graphene opens a semiconducting gap due to quantum confinement, preventing its fine-tuning by electrostatic gates. Here we induce zero-energy states into a semiconducting Kagome graphene by inserting π-radicals at selected locations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!