InCl: A Versatile Catalyst for Synthesizing a Broad Spectrum of Heterocycles.

ACS Omega

Laboratory of Catalysis and Chemical Biology, Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India.

Published: February 2020

This review deals with the recent applications of the indium trichloride (InCl) catalyst in the synthesis of a broad spectrum of heterocyclic compounds. Over the years, a number of reviews on the applications of InCl-catalyzed organic synthesis have appeared in the literature. It is evident that InCl has emerged as a valuable catalyst for a wide range of organic transformations due to its stability when exposed to moisture and also in an aqueous medium. The most attractive feature of this review is the application of the InCl catalyst for synthesizing bioactive heterocyclic compounds. The study of InCl-catalyzed organic reactions has high potential and better intriguing aspects, which are anticipated to originate from this field of research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033683PMC
http://dx.doi.org/10.1021/acsomega.9b03686DOI Listing

Publication Analysis

Top Keywords

catalyst synthesizing
8
broad spectrum
8
incl catalyst
8
heterocyclic compounds
8
incl-catalyzed organic
8
incl
4
incl versatile
4
catalyst
4
versatile catalyst
4
synthesizing broad
4

Similar Publications

Synthesis of piceid lipoate and the effect and micro-mechanism of alpha-lipoic acid moiety on its antioxidant activity.

Food Res Int

January 2025

Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:

A lipophilic piceid lipoate (PIL) was synthesized by enzymatic method to enhance the antioxidant activity of piceid and improve its state in oil system. The highest substrate conversion of 93.71 % was obtained in γ-valerolactone using Novozym 435 as a catalyst, with a piceid/lipoic acid ratio of 1:15 (mM/mM), an enzyme dosage of 40 mg/mL, and 4 Å molecular sieves at 400 mg/mL.

View Article and Find Full Text PDF

Ground-level ozone (O) can infiltrate indoor environments, severely impacting the environment and human health. Moisture-induced catalyst deactivation is a major challenge in catalytic ozone removal. MOF-template-derived heterojunctions supported by carbon materials can prevent chemisorption of water vapor at active sites.

View Article and Find Full Text PDF

Disentangling activity-stability trade-off in the catalytic degradation of malodorous sulfur-containing VOCs driven by active sites' self-dynamic evolution.

J Hazard Mater

December 2024

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650050, PR China; Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Key Laboratory of Yunnan Province for Synthesizing Sulfur-containing Fine Chemicals, The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China. Electronic address:

The catalytic degradation of malodorous sulfur-containing volatile organic compounds (S-VOCs), especially methanethiol (CHSH), faces an enormous challenge in striking a balance between activity and stability. Herein, we develop the time-tandem and spatial-extended strategy for synthesizing t-MoO/meso-SiO nano-reactor-type catalysts and reveal the migration and transformation behaviors of both carbon and sulfur species at the mesoscopic scale to break the catalytic CHSH activity and stability trade-off. The dynamic evolution of active centers from initial oxygen sites and acid sites to sulfur vacancies in MoS during the reaction process as well as the formation of a new dimethyl disulfide (CHSSCH) reaction pathway are identified as the main reason for the catalysts' superior activity and sulfur resistance.

View Article and Find Full Text PDF

Protein-Polymer Conjugates as Biocompatible and Recyclable ATRP Catalysts.

Biomacromolecules

January 2025

Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.

Atom transfer radical polymerization (ATRP) is a leading method for creating polymers with precise control over molecular weight, yet its reliance on metal catalysts limits its application in metal-sensitive and environmental contexts. Addressing these limitations, we have developed a recyclable, biocompatible, robust, and tunable ATRP catalyst composed of a protein-polymer-copper conjugate, synthesized by polymerizing an -proline-based monomer onto bovine serum albumin and complexing with Cu(II). The use of this conjugate catalyst maintains ATRP's precision while ensuring biocompatibility with both and HEK 293 cells, and its high molecular weight allows for easy recycling through dialysis.

View Article and Find Full Text PDF

Boosting the Performance of Alkaline Anion Exchange Membrane Water Electrolyzer with Vanadium-Doped NiFeO.

Small

January 2025

Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea.

Developing efficient, economical, and stable catalysts for the oxygen evolution reaction is pivotal for producing large-scale green hydrogen in the future. Herein, a vanadium-doped nickel-iron oxide supported on nickel foam (V-NiFeO/NF) is introduced, and synthesized via a facile hydrothermal method as a highly efficient electrocatalyst for water electrolysis. X-ray photoelectron and absorption spectroscopies reveal a synergistic interaction between the vanadium dopant and nickel/iron in the host material, which tunes the electronic structure of NiFeO to increase the number of electrochemically active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!