Efficient water use assessment and irrigation management is critical for the sustainability of irrigated agriculture, especially under changing climate conditions. Due to the impracticality of maintaining ground instrumentation over wide geographic areas, remote sensing and numerical model-based fine-scale mapping of soil water conditions have been applied for water resource applications at a range of spatial scales. Here, we present a prototype framework for integrating high-resolution thermal infrared (TIR) and synthetic aperture radar (SAR) remote sensing data into a soil-vegetation-atmosphere-transfer (SVAT) model with the aim of providing improved estimates of surface- and root-zone soil moisture that can support optimized irrigation management strategies. Specifically, remotely-sensed estimates of water stress (from TIR) and surface soil moisture retrievals (from SAR) are assimilated into a 30-m resolution SVAT model over a vineyard site in the Central Valley of California, U.S. The efficacy of our data assimilation algorithm is investigated via both the synthetic and real data experiments. Results demonstrate that a particle filtering approach is superior to an ensemble Kalman filter for handling the nonlinear relationship between model states and observations. In addition, biophysical conditions such as leaf area index are shown to impact the relationship between observations and states and must therefore be represented accurately in the assimilation model. Overall, both surface and root-zone soil moisture predicted via the SVAT model are enhanced through the assimilation of thermal and radar-based retrievals, suggesting the potential for improving irrigation management at the agricultural sub-field scale using a data assimilation strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038819PMC
http://dx.doi.org/10.1016/j.rse.2019.111622DOI Listing

Publication Analysis

Top Keywords

soil moisture
16
data assimilation
12
remote sensing
12
irrigation management
12
svat model
12
high-resolution thermal
8
root-zone soil
8
data
5
soil
5
model
5

Similar Publications

The Inner Mongolia section of the Yellow River is a seasonal frozen soil area, where the freeze-thaw effect can alter soil strength and compressibility, affecting bank stability. This study takes the banks sandy silt of the Inner Mongolia section of the Yellow River as the research object. It systematically investigates the relationship between shear strength parameters and compression index of sandy silt and the initial dry density, water content, and freeze-thaw cycles of the soil.

View Article and Find Full Text PDF

This study investigates the feasibility of using nano-thermal rod for deicing tunnel pavements in cold region. The heating performance of the nano-thermal rod was compared with that of carbon fiber heating wire under low voltage conditions. Experimental studies were conducted in a controlled environmental chamber to evaluate the effects of arrangement parameters (spacing, buried depth, input power) and environmental factors (ambient temperature and moisture) on heating rate and effectiveness.

View Article and Find Full Text PDF

Drivers of stunting and wasting across serial cross-sectional household surveys of children under 2 years of age in Pakistan: potential contribution of ecological factors.

Am J Clin Nutr

January 2025

Centre for Global Child Health, Hospital for Sick Children, Toronto, Canada; Centre for Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan; Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan. Electronic address:

Background: The impact of direct and indirect drivers on linear growth and wasting in young children is of public health interest. While the contributions of poverty, maternal education, empowerment and birth weight to early childhood growth are well recognized, the contribution of environmental factors like heat, precipitation, agriculture outputs and food security in comparable datasets is less well established.

Objectives: To investigate the association of length-for-age z-score (LAZ) and weight-for-length z-score (WLZ) with various indicators among children under 2 years of age in Pakistan using representative household level nutrition surveys and ecological datasets.

View Article and Find Full Text PDF

Use of magnetite nanoparticles and magnetic separation for the removal of metal(loid)s from contaminated mine soils.

J Hazard Mater

January 2025

Departamento de Química Orgánica y Bio-Orgánica, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta s/n, Las Rozas de Madrid 28232, Spain. Electronic address:

Magnetite nanoparticles have been successfully used for removal and immobilization of contaminants in water, yet their application in soils combined with in situ magnetic separation remains unexplored. We evaluated the effectiveness and optimal conditions for using magnetite nanoparticles combined with magnetic separation to remove metal(loid)s from contaminated mine soils. Soil samples were incubated (15, 45 days) with varying doses of magnetite (0, 25, 50 g kg⁻¹) and moisture (dry, field capacity) and separated using electromagnet or permanent magnet.

View Article and Find Full Text PDF

Analytical expressions of specific yield for shallow groundwater estimation and modeling.

Environ Monit Assess

January 2025

Chinese-Israeli International Center for Research and Training in Agriculture, China Agricultural University, Beijing, People's Republic of China.

Specific yield (S) is an essential hydrogeological parameter in groundwater-related modeling and estimation. In this study, we proposed several new analytical expressions of S to characterize the nonlinear variations of S under shallow groundwater environments, encompassing S for three-layered soil, transition zone S, and flux-dependent S (in Boussinesq-type equation). The proposed S expression for three-layered soils expanded the applicability of previous expressions for homogeneous soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!