Plant responses to salinity have been extensively studied over the last decades. Despite the vast accumulated knowledge, the ways Arabidopsis lateral roots (LR) cope with lethal salinity has not been fully resolved. Here we compared the primary root (PR) and the LR responses during events leading to lethal salinity (NaCl 200 mM) in Arabidopsis. We found that the PR and young LR responded differently to lethal salinity: While the PR died, emerging and young LR's remained strikingly viable. Moreover, "age acquired salt tolerance" (AAST) was observed in the PR. During the 2 days after germination (DAG) the PR was highly sensitive, but at 8 DAG there was a significant increase in the PR cell survival. Nevertheless, the young LR exhibited an opposite pattern and completely lost its salinity tolerance, as it elongated beyond 400 µm. Examination of several cell death signatures investigated in the young LR showed no signs of an active programmed cell death (PCD) during lethal salinity. However, Autophagic PCD (A-PCD) but not apoptosis-like PCD (AL-PCD) was found to be activated in the PR during the high salinity conditions. We further found that salinity induced NADPH oxidase activated ROS, which were more highly distributed in the young LR compared to the PR, is required for the improved viability of the LR during lethal salinity conditions. Our data demonstrated a position-dependent resistance of Arabidopsis young LR to high salinity. This response can lead to identification of novel salt stress coping mechanisms needed by agriculture during the soil salinization challenge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040039PMC
http://dx.doi.org/10.1038/s41598-020-60163-7DOI Listing

Publication Analysis

Top Keywords

lethal salinity
24
salinity
11
emerging young
8
lateral roots
8
primary root
8
arabidopsis young
8
cell death
8
high salinity
8
salinity conditions
8
young
7

Similar Publications

The Functional Identification of the Gene in the Kidney of .

Int J Mol Sci

January 2025

Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China.

This study aims to identify the function of the () gene in the kidneys of . CYP2E1 is a significant metabolic enzyme involved in the metabolism of various endogenous and exogenous compounds and is associated with the occurrence and progression of multiple diseases. Given 's ability to survive in the extremely arid , we hypothesize that CYP2E1 in its kidneys plays a crucial role in adaptability.

View Article and Find Full Text PDF

The effect of calcium on acute sodium chloride toxicity in Daphnia species.

Environ Toxicol Chem

January 2025

Department of Biology, Queen's University, Kingston, ON, Canada.

Chloride concentrations in freshwater are rising, with toxic effects on aquatic life. In temperate regions with cold winters, road salt used for deicing paved surfaces is a primary cause. There is evidence that water hardness can modify salt toxicity, but data are insufficient to inform policy.

View Article and Find Full Text PDF

High levels of nitrogen compounds can lead to acute toxicity in aquatic organisms. Ammonia, a by-product of protein breakdown, is the most prevalent contaminant in freshwater environments. Increasing salinity in water sources can cause fluctuations in salinity levels within breeding ponds.

View Article and Find Full Text PDF

The point of our study was to examine the interaction of ammonia-N poisoning and salinity on serum enzymes and oxidative stress factors of blood and liver in Nile tilapia (Oreochromis niloticus). The 50% lethal concentration (LC) in 96 h was 0.86 mg/L of ammonia-N.

View Article and Find Full Text PDF

Exploring urban coastal areas: Investigating the urban coastal areas as a reservoirs of antibiotic resistance Genes★.

Mar Environ Res

November 2024

Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong Special Administrative Region of China. Electronic address:

Antibiotic resistance genes (ARGs) have long served as adaptive defensive mechanisms among bacteria, enabling their survival and propagation in challenging environments. The consequences of inefficient wastewater treatment have culminated the emergence of untreatable and lethal extensively drug-resistant. To understand the relationship between wastewater effluent and marine ecosystems, we conducted a study to monitor the diversity and prevalence of common ARGs in Hong Kong's urban coastal areas at different seasons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!