In the absence of a correlate(s) of protection against human tuberculosis and a validated animal model of the disease, tools to facilitate vaccine development must be identified. We present an optimised ex vivo mycobacterial growth inhibition assay (MGIA) to assess the ability of host cells within the lung to inhibit mycobacterial growth, including Bacille Calmette-Guérin (BCG) and Mycobacterium tuberculosis (MTB) Erdman. Growth of BCG was reduced by 0.39, 0.96 and 0.73 log CFU following subcutaneous (s.c.) BCG, intranasal (i.n.) BCG, or BCG s.c. + mucosal boost, respectively, versus naïve mice. Comparatively, a 0.49 (s.c.), 0.60 (i.n.) and 0.81 (s.c. + mucosal boost) log reduction in MTB CFU was found. A BCG growth inhibitor, 2-thiophenecarboxylic acid hydrazide (TCH), was used to prevent quantification of residual BCG from i.n. immunisation and allow accurate MTB quantification. Using TCH, a further 0.58 log reduction in MTB CFU was revealed in the i.n. group. In combination with existing methods, the ex vivo lung MGIA may represent an important tool for analysis of vaccine efficacy and the immune mechanisms associated with vaccination in the organ primarily affected by MTB disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039920PMC
http://dx.doi.org/10.1038/s41598-020-60223-yDOI Listing

Publication Analysis

Top Keywords

mycobacterial growth
12
vivo mycobacterial
8
growth inhibition
8
inhibition assay
8
mucosal boost
8
log reduction
8
reduction mtb
8
mtb cfu
8
bcg
7
growth
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!