Complex network theory (CNT) is gaining a lot of attention in the scientific community, due to its capability to model and interpret an impressive number of natural and anthropic phenomena. One of the most active CNT field concerns the evaluation of the centrality of vertices and edges in the network. Several metrics have been proposed, but all of them share a topological point of view, namely centrality descends from the local or global connectivity structure of the network. However, vertices can exhibit their own intrinsic relevance independent from topology; e.g., vertices representing strategic locations (e.g., hospitals, water and energy sources, etc.) or institutional roles (e.g., presidents, agencies, etc.). In these cases, the connectivity network structure and vertex intrinsic relevance mutually concur to define the centrality of vertices and edges. The purpose of this work is to embed the information about the intrinsic relevance of vertices into CNT tools to enhance the network analysis. We focus on the degree, closeness and betweenness metrics, being among the most used. Two examples, concerning a social (the historical Florence family's marriage network) and an infrastructure (a water supply system) network, demonstrate the effectiveness of the proposed relevance-embedding extension of the centrality metrics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039870 | PMC |
http://dx.doi.org/10.1038/s41598-020-60151-x | DOI Listing |
Philos Trans R Soc Lond B Biol Sci
January 2025
Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
The Asian malaria vector is invading Africa, requiring it to adapt to novel climates and ecosystems. In part, this may be facilitated by 's poorly understood seasonal behavioural plasticity in flight timing, leading to earlier biting activity in cold Asian winters and later biting times in the warm summer. Changes in behavioural timing could be directly imposed by seasonal variation in ambient light and temperature levels or result from altered entrainment of intrinsically expressed circadian rhythms by these factors.
View Article and Find Full Text PDFChronobiol Int
January 2025
Laboratory of Braintime, Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan.
The intricate relationship between circadian rhythms and mood is well-established. Disturbances in circadian rhythms and sleep often precede the development of mood disorders, such as major depressive disorder (MDD), bipolar disorder (BD), and seasonal affective disorder (SAD). Two primary factors, intrinsic circadian clocks and light, drive the natural fluctuations in mood throughout the day, mirroring the patterns of sleepiness and wakefulness.
View Article and Find Full Text PDFMol Oncol
January 2025
Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada.
Patient stratification remains a challenge for optimal treatment of prostate cancer (PCa). This clinical heterogeneity implies intra-tumoural heterogeneity, with different prostate epithelial cell subtypes not all targeted by current treatments. We reported that such cell subtypes are traceable in liquid biopsies through representative transcripts.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03766, USA.
Microglia respond to cytotoxic protein aggregates associated with the progression of neurodegenerative disease. Pathological protein aggregates activate the microglial NLRP3 inflammasome resulting in proinflammatory signaling, secretion, and potentially pyroptotic cell death. We characterized mixed sex primary mouse microglia exposed to microbial stressors and alpha synuclein preformed fibrils (αsyn PFFs) to identify cellular mechanisms related to Parkinson's disease.
View Article and Find Full Text PDFMol Neurodegener
January 2025
The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
Background: Age is the principal risk factor for neurodegeneration in both the retina and brain. The retina and brain share many biological properties; thus, insights into retinal aging and degeneration may shed light onto similar processes in the brain. Genetic makeup strongly influences susceptibility to age-related retinal disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!