The collective behaviour of neural networks depends on the cellular and synaptic properties of the neurons. The phase-response curve (PRC) is an experimentally obtainable measure of cellular properties that quantifies the shift in the next spike time of a neuron as a function of the phase at which stimulus is delivered to that neuron. The neuronal PRCs can be classified as having either purely positive values (type I) or distinct positive and negative regions (type II). Networks of type 1 PRCs tend not to synchronize via mutual excitatory synaptic connections. We study the synchronization properties of identical type I and type II neurons, assuming unidirectional synapses. Performing the linear stability analysis and the numerical simulation of the extended Kuramoto model, we show that feedforward loop motifs favour synchronization of type I excitatory and inhibitory neurons, while feedback loop motifs destroy their synchronization tendency. Moreover, large directed networks, either without feedback motifs or with many of them, have been constructed from the same undirected backbones, and a high synchronization level is observed for directed acyclic graphs with type I neurons. It has been shown that, the synchronizability of type I neurons depends on both the directionality of the network connectivity and the topology of its undirected backbone. The abundance of feedforward motifs enhances the synchronizability of the directed acyclic graphs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039997PMC
http://dx.doi.org/10.1038/s41598-020-60205-0DOI Listing

Publication Analysis

Top Keywords

type neurons
16
type
9
networks type
8
loop motifs
8
directed acyclic
8
acyclic graphs
8
neurons
6
synchronization
5
emergence global
4
global synchronization
4

Similar Publications

Background: Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear.

View Article and Find Full Text PDF

Compound 38, a novel potent and selective antagonist of adenosine A receptor, enhances arousal in mice.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China.

Adenosine A receptor (AR) plays a pivotal role in the regulation of sleep-wake behaviors. We previously reported an AR selective antagonist compound 38 with an IC value of 29.0 nM.

View Article and Find Full Text PDF

Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.

View Article and Find Full Text PDF

Molecular and cellular dynamics of the developing human neocortex.

Nature

January 2025

The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.

The development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.

View Article and Find Full Text PDF

Appropriate risk evaluation is essential for survival in complex, uncertain environments. Confronted with choosing between certain (safe) and uncertain (risky) options, animals show strong preference for either option consistently across extended time periods. How such risk preference is encoded in the brain remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!