Major myeloid cell functions from adhesion to migration and phagocytosis are mediated by integrin adhesion complexes, also known as adhesome. The presence of a direct integrin binding partner Kindlin-3 is crucial for these functions, and its lack causes severe immunodeficiency in humans. However, how Kindlin-3 is incorporated into the adhesome and how its function is regulated is poorly understood. In this study, using nuclear magnetic resonance spectroscopy, we show that Kindlin-3 directly interacts with paxillin (PXN) and leupaxin (LPXN) via G43/L47 within its F0 domain. Surprisingly, disruption of Kindlin-3-PXN/LPXN interactions in Raw 264.7 macrophages promoted cell spreading and polarization, resulting in upregulation of both general cell motility and directed cell migration, which is in a drastic contrast to the consequences of Kindlin-3 knockout. Moreover, disruption of Kindlin-3-PXN/LPXN binding promoted the transition from mesenchymal to amoeboid mode of movement as well as augmented phagocytosis. Thus, these novel links between Kindlin-3 and key adhesome members PXN/LPXN limit myeloid cell motility and phagocytosis, thereby providing an important immune regulatory mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203317 | PMC |
http://dx.doi.org/10.4049/jimmunol.1901134 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!