AI Article Synopsis

Article Abstract

Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system. Dysregulation of STAT3, a transcription factor pivotal to various cellular processes including Th17 cell differentiation, has been implicated in MS. Here, we report that STAT3 is activated in infiltrating monocytic cells near active MS lesions and that activation of STAT3 in myeloid cells is essential for leukocyte infiltration, neuroinflammation, and demyelination in experimental autoimmune encephalomyelitis (EAE). Genetic disruption of in peripheral myeloid lineage cells abrogated EAE, which was associated with decreased antigen-specific T helper cell responses. Myeloid cells from immunized mutant mice exhibited impaired antigen-presenting functions and were ineffective in driving encephalitogenic T cell differentiation. Single-cell transcriptome analyses of myeloid lineage cells from preclinical wild-type and mutant mice revealed that loss of myeloid STAT3 signaling disrupted antigen-dependent cross-activation of myeloid cells and T helper cells. This study identifies a previously unrecognized requisite for myeloid cell STAT3 in the activation of myelin-reactive T cells and suggests myeloid STAT3 as a potential therapeutic target for autoimmune demyelinating disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071888PMC
http://dx.doi.org/10.1073/pnas.1913997117DOI Listing

Publication Analysis

Top Keywords

myeloid cells
16
cell differentiation
12
myeloid
9
cells
9
stat3 signaling
8
demyelinating disease
8
myeloid lineage
8
lineage cells
8
mutant mice
8
myeloid stat3
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!