Background: Accurate Anopheles species identification is key for effective malaria vector control. Identification primarily depends on morphological analysis of field samples as well as molecular species-specific identifications. During an intra-laboratory assessment (proficiency testing) of the Anopheles funestus group multiplex PCR assay, it was noted that Anopheles arabiensis can be misidentified as Anopheles leesoni, a zoophilic member of the An. funestus group. The aim of this project was, therefore, to ascertain whether other members of the Anopheles gambiae complex can also be misidentified as An. leesoni when using the standard An. funestus multiplex PCR.

Methods: The An. funestus multiplex PCR was used to amplify DNA from An. gambiae complex specimens. These included specimens from the laboratory colonies and field samples from the Democratic Republic of Congo. Amplified DNA from these specimens, using the universal (UV) and An. leesoni species-specific primers (LEES), were sequence analysed. Additionally, An. leesoni DNA was processed through the diagnostic An. gambiae multiplex PCR to determine if this species can be misidentified as a member of the An. gambiae complex.

Results: Laboratory-colonized as well as field-collected samples of An. arabiensis, An. gambiae, Anopheles merus, Anopheles quadriannulatus, Anopheles coluzzii as well as Anopheles moucheti produced an amplicon of similar size to that of An. leesoni when using an An. funestus multiplex PCR. Sequence analysis confirmed that the UV and LEES primers amplify a segment of the ITS2 region of members of the An. gambiae complex and An. moucheti. The reverse was not true, i.e. the An. gambiae multiplex PCR does not amplify DNA from An. leesoni.

Conclusion: This investigation shows that An. arabiensis, An. gambiae, An. merus, An. quadriannulatus, An. coluzzii and An. moucheti can be misidentified as An. leesoni when using An. funestus multiplex PCR. This shows the importance of identifying specimens using standard morphological dichotomous keys as far as possible prior to the use of appropriate PCR-based identification methods. Should there be doubt concerning field-collected specimens molecularly identified as An. leesoni, the An. gambiae multiplex PCR and sequencing of the internal transcribed spacer 2 (ITS2) can be used to eliminate false identifications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038563PMC
http://dx.doi.org/10.1186/s12936-020-03168-xDOI Listing

Publication Analysis

Top Keywords

multiplex pcr
28
gambiae complex
16
funestus multiplex
16
gambiae multiplex
12
anopheles
11
gambiae
10
anopheles gambiae
8
complex misidentified
8
misidentified anopheles
8
leesoni
8

Similar Publications

Objectives: Surveillance of acute respiratory infection (ARI) informs vaccination, preventive, and management decisions. In many countries, immunofluorescence is the cornerstone for ARI surveillance. We aimed to determine the effect of adding multiplex polymerase chain reaction (mPCR) to conventional surveillance in ARI.

View Article and Find Full Text PDF

Although human metapneumovirus(hMPV) infection can induce severe symptoms in older adults or immunocompromised patients, it usually causes mild symptoms in young immunocompetent adults. The prevalence of hMPV infectious disease is highest during the late winter and early summer. We report a hypoxemic case of hMPV infection in a young immunocompetent man that occurred in the first autumn after the reclassification of coronavirus disease (COVID-19) from Class 2 to Class 5.

View Article and Find Full Text PDF

In phage display technology, exogenous DNA is inserted into the phage genome, which generates a fusion protein with the phage coat protein, facilitates expression and promotes biological activity. This approach is primarily used to screen antibody libraries owing to its high library capacity and fast technical cycle; additionally, various types of genetically altered antibodies can be easily produced. In this study, we fused the pIII structural protein of the M13K07 phage with a scFv created by connecting the VH and VL domains of an anti-IFN-γ antibody.

View Article and Find Full Text PDF

spp. present in the food chain have been of much interest during the last few decades due to their implication in the development of antimicrobial resistance. We determined the prevalence of spp.

View Article and Find Full Text PDF

Development of a qPCR assay to identify and differentiate insect-associated strains of the complex.

J Vet Diagn Invest

January 2025

Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia.

The complex contains important opportunistic pathogens of humans and vertebrate animals, as well as insects and other invertebrates. To date, the methods used for the identification of species within the genus , including PCR assays, have poor discriminatory power and may require further molecular typing or genomic sequence analysis to determine clinical relevance. We developed a duplex TaqMan probe-based quantitative real-time PCR (qPCR) assay targeting the gene, which is involved in chitin degradation and transport, and the gene, which is involved in urease production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!