Background: Alteration in gut microbiota has been recently linked with childhood leukemia and the use of chemotherapy. Whether the perturbed microbiota community is restored after disease remission and cessation of cancer treatment has not been evaluated. This study examines the chronological changes of gut microbiota in children with acute lymphoblastic leukemia (ALL) prior to the start-, during-, and following cessation of chemotherapy.
Methodology: We conducted a longitudinal observational study in gut microbiota profile in a group of paediatric patients diagnosed with ALL using 16 s ribosomal RNA sequencing and compared these patients' microbiota pattern with age and ethnicity-matched healthy children. Temporal changes of gut microbiota in these patients with ALL were also examined at different time-points in relation to chemotherapy.
Results: Prior to commencement of chemotherapy, gut microbiota in children with ALL had larger inter-individual variability compared to healthy controls and was enriched with bacteria belonging to Bacteroidetes phylum and Bacteroides genus. The relative abundance of Bacteroides decreased upon commencement of chemotherapy. Restitution of gut microbiota composition to resemble that of healthy controls occurred after cessation of chemotherapy. However, the microbiota composition (beta diversity) remained distinctive and a few bacteria were different in abundance among the patients with ALL compared to controls despite completion of chemotherapy and presumed restoration of normal health.
Conclusion: Our findings in this pilot study is the first to suggest that gut microbiota profile in children with ALL remains marginally different from healthy controls even after cessation of chemotherapy. These persistent microbiota changes may have a role in the long-term wellbeing in childhood cancer survivors but the impact of these changes in subsequent health perturbations in these survivors remain unexplored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041273 | PMC |
http://dx.doi.org/10.1186/s12885-020-6654-5 | DOI Listing |
Semin Immunopathol
January 2025
Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
The brain-gut axis constitutes the basis for the bidirectional communication between the central nervous system and the gastrointestinal tract driven by neural, hormonal, metabolic, immunological, and microbial signals. Alterations in the gut microbiome composition as observed in inflammatory bowel diseases can modulate brain function and emerging empirical evidence has indicated that interactions among the brain-gut microbiome-axis seem to play a significant role in the pathogenesis of both inflammatory bowel diseases and psychiatric disorders and their comorbidity. Yet, the immunological and molecular mechanisms underlying the co-occurrence of inflammatory bowel diseases and psychological symptoms are still poorly understood.
View Article and Find Full Text PDFGut
January 2025
Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
Background: Non-absorbed dietary emulsifiers, including carboxymethylcellulose (CMC), directly disturb intestinal microbiota, thereby promoting chronic intestinal inflammation in mice. A randomised controlled-feeding study (Functional Research on Emulsifiers in Humans, FRESH) found that CMC also detrimentally impacts intestinal microbiota in some, but not all, healthy individuals.
Objectives: This study aimed to establish an approach for predicting an individual's sensitivity to dietary emulsifiers via their baseline microbiota.
Gut
January 2025
Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
Background: Fasting-mimicking diet (FMD) boosts the antitumour immune response in patients with colorectal cancer (CRC). The gut microbiota is a key host immunity regulator, affecting physiological homeostasis and disease pathogenesis.
Objective: We aimed to investigate how FMD protects against CRC via gut microbiota modulation.
Clin Microbiol Infect
January 2025
Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain. Electronic address:
Objectives: Faecal microbiota transplantation (FMT) is an established treatment for recurrent Clostridioides difficile infection (R-CDI). This study aimed to identify calprotectin and microbiome characteristics as potential biomarkers of FMT success.
Methods: We conducted a prospective study of patients who underwent oral FMT (single dose of 4-5 capsules) for R-CDI (January 2018 to December 2022).
J Adv Res
January 2025
Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:
Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.
Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.
Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!