In grapevine, the anatomy of xylem conduits and the non-structural carbohydrates (NSCs) content of the associated living parenchyma are expected to influence water transport under water limitation. In fact, both NSC and xylem features play a role in plant recovery from drought stress. We evaluated these traits in petioles of Cabernet Sauvignon (CS) and Syrah (SY) cultivars during water stress (WS) and recovery. In CS, the stress response was associated to NSC consumption, supporting the hypothesis that starch mobilization is related to an increased supply of maltose and sucrose, putatively involved in drought stress responses at the xylem level. In contrast, in SY, the WS-induced increase in the latter soluble NSCs was maintained even 2 days after re-watering, suggesting a different pattern of utilization of NSC resources. Interestingly, the anatomical analysis revealed that conduits are constitutively wider in SY in well-watered (WW) plants, and that water stress led to the production of narrower conduits only in this cultivar.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073087PMC
http://dx.doi.org/10.3390/ijms21041457DOI Listing

Publication Analysis

Top Keywords

non-structural carbohydrates
8
drought stress
8
water stress
8
stress
5
analysis non-structural
4
xylem
4
carbohydrates xylem
4
xylem anatomy
4
anatomy leaf
4
leaf petioles
4

Similar Publications

Shade tolerance in wheat is related to photosynthetic limitation and morphological and physiological acclimations.

Front Plant Sci

December 2024

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan, China.

Low solar irradiance reaching the canopy due to fog and heavy haze is a significant yield-limiting factor worldwide. However, how plants adapt to shade stress and the mechanisms underlying the reduction in leaf photosynthetic capacity and grain yield remain unclear. In this study (conducted during 2018-2021), we investigated the impact of light deprivation (60%) at the pre-anthesis and post-anthesis stages on leaf carboxylation efficiency, source-to-sink relationships, sucrose metabolism, and grain yield of wheat cultivars with contrasting shade tolerance.

View Article and Find Full Text PDF

Background: Gleditsia sinensis Lam. (Fabaceae) is a medicinal legume characterized by its spines and pods, which are rich in saponins, polysaccharides, and various specialized metabolites with potential medicinal and industrial applications. The low fruit set rate in artificially cultivated economic forests significantly impedes its development and utilization.

View Article and Find Full Text PDF

Coordination of Carbon and Nitrogen Metabolism Through Well-Timed Mid-Stage Nitrogen Compensation in Japonica Super Rice.

Plants (Basel)

November 2024

Jiangsu Key Laboratory of Crop Cultivation and Physiology, Research Institute of Rice Industrial Engineering Technology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.

The carbon and nitrogen (N) metabolism of rice under different mid-stage N compensation timings is unclear. Two Japonica super rice cultivars were examined under four N compensation timings (N1-N3: N compensation at mid-tillering, panicle initiation, and spikelet differentiation. N0: no N compensation) and CK with no N application.

View Article and Find Full Text PDF

Insulin dysregulation (ID) is associated with an increased risk of laminitis which often necessitates the need for clinical intervention. To test the contention that the prophylactic supplementation of nutraceuticals could mitigate ID in susceptible horses, 16 mature horses with a history of ID were supplemented with either the placebo ( = 8) or nutraceutical ( = 8) once daily. Horses were housed in dry lots with ad libitum access to grass hay and fed a concentrate twice daily to provide 0.

View Article and Find Full Text PDF

Backgrounds And Aims: Shading, water deficit, and crop load shape plant development in a very plastic way. They directly influence the plant's carbon supply and demand to and from the different organs via metabolic, hydraulic and hormonal mechanisms. However, how the multiple environmental factors combine through these mechanisms and how they interplay with carbon status, vegetative and reproductive development and carbon assimilation of the plant needs to be investigated in the context of current climatic and technological constraints.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!