Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Experimental data on the affinity of various substances to albumin are essential for the development of empirical models to predict plasma binding of drug candidates. Binding of 24 substituted benzoic acid anions to bovine serum albumin was studied using spectrofluorimetric titration. The equilibrium constants of binding at 298 K were determined according to 1:1 complex formation model. The relationships between the ligand structure and albumin affinity are analyzed. The binding constant values for m- and p-monosubstituted acids show a good correlation with the Hammett constants of substituents. Two- and three-parameter quantitative structure-activity relationship (QSAR) models with theoretical molecular descriptors are able to satisfactorily describe the obtained values for the whole set of acids. It is shown that the electron-density distribution in the aromatic ring exerts crucial influence on the albumin affinity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169394 | PMC |
http://dx.doi.org/10.3390/ph13020030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!