Fluorescent imaging, which is an important interdisciplinary field bridging research from organic chemistry, biochemistry and cell biology has been applied for multi-dimensional detection, visualization and characterization of biological structures and processes. Especially valuable is the possibility to monitor cellular processes in real time using fluorescent probes. In this work, conjugated oligoelectrolytes and neutral derivatives with the distyrylnaphthalene core (SN-COEs) were designed, synthetized and tested for biological properties as membrane-specific fluorescent dyes for the visualization of membrane-dependent cellular processes. The group of tested compounds includes newly synthesized distyrylnaphthalene derivatives (DSNNs): a trimethylammonium derivative (DSNN-NMe), a phosphonate derivative (DSNN-P), a morpholine derivative (DSNN-Mor), a dihydroxyethylamine derivative (DSNN-DEA), a phosphonate potassium salt (DSNN-POK), an amino derivative (DSNN-NH) and pyridinium derivative (DSNN-Py+). All compounds were tested for their biological properties, including cytotoxicity and staining efficiency towards mammalian cells. The fluorescence intensity of SN-COEs incorporated into cellular structures was analyzed by fluorescence activated cell sorting (FACS) and photoluminescence spectroscopy. The cytotoxicity results have shown that all tested SN-COEs can be safely used in the human and animal cell studies. Fluorescence and confocal microscopy observations confirm that tested COEs can be applied as fluorescent probes for the visualization of intracellular membrane components in a wide range of different cell types, including adherent and suspension cells. The staining procedure may be performed under both serum free and complete medium conditions. The presented studies have revealed the interesting biological properties of SN-COEs and confirmed their applicability as dyes for staining the membranous structures of eukaryotic cells, which may be useful for visualization of wide range of biological processes dependent of the extra-/intracellular communications and/or based on the remodeling of cellular membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078901PMC
http://dx.doi.org/10.3390/ma13040951DOI Listing

Publication Analysis

Top Keywords

biological properties
12
distyrylnaphthalene derivatives
8
cellular membranes
8
cellular processes
8
fluorescent probes
8
tested biological
8
wide range
8
derivative
6
visualization
5
cellular
5

Similar Publications

A common heavy metal in many facets of daily life is aluminum (AlCl3), which can be found in food, toothpaste, cosmetics, food additives, and numerous pharmaceutical items. The hippocampus, liver, and kidneys have the highest concentrations of this powerful neurotoxin, which also accumulates over time and contributes to the development of a number of cognitive disorders. Long-term overconsumption of AlCl3 results in hepatic and renal toxicity as well as neuronal inflammation.

View Article and Find Full Text PDF

Pomegranate peel powder is used as a functional ingredient in the development of nutritional bars. Pomegranate (Punica granatum) is well known fruit belongs to punicaceae family having multiple health benefits, not only limited to its edible parts but also in its non-edible parts mostly the peel. Fruit wastes are rich source of nutrients, and can be used for the development of functional food products.

View Article and Find Full Text PDF

Rice blast, caused by Magnaporthe oryzae, is one of the most destructive fungal diseases in rice, resulting in major economic losses worldwide. Genetic and genomic studies have identified key genes and proteins, such as AvrPik variants and MAX proteins, that are crucial for the pathogen's virulence. These effector proteins interact with specific alleles of the Pik gene family on rice chromosome 11, modulating the host's immune response.

View Article and Find Full Text PDF

Propolis, a natural product with remarkable therapeutic potential, has gained attention for its antimicrobial, antioxidant, and anti-inflammatory properties. In this study, propolis samples from Sarıyaprak, Kovanağzı, and Çemikari in Pervari, Siirt province, were analysed comprehensively. The evaluation included wax composition, DPPH and FRAP assays, total phenolic and flavonoid content, and pollen analysis.

View Article and Find Full Text PDF

Semiconducting Overoxidized Polypyrrole Nano-Particles for Photocatalytic Water Splitting.

Small

January 2025

UMR 8182, CNRS, Institut de Chimie Moléculaires et des Matériaux d'Orsay, Université Paris-Saclay, Orsay, 91405, France.

Capturing sunlight to fuel the water splitting reaction (WSR) into O and H is the leitmotif of the research around artificial photosynthesis. Organic semiconductors have now joined the quorum of materials currently dominated by inorganic oxides, where for both families of compounds the bandgaps and energies can be adjusted synthetically to perform the Water Splitting Reaction. However, elaborated and tedious synthetic pathways are necessary to optimize the photophysical properties of organic semiconductors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!