Optimal Design and Analysis on High Overload Buffer Structure of Passive Semi-Strapdown Inertial Navigation System.

Sensors (Basel)

National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China.

Published: February 2020

The isolation rolling platform inside a passive semi-strapdown inertial navigation system can isolate the high-speed rotation of a projectile via bearing to provide a low rotating speed environment for the angular rate sensors inside the platform in order to further improve the accuracy by reducing its measurement range. Aiming at the problem that the internal bearing cannot withstand high overload, an optimal design method for a high overload buffer structure based on point contact spherical cap structure is proposed. Changing the materials of the spherical caps can reduce the deformation of the two spherical caps during impact and reduce the pivoting friction; at the same time, the upper and lower spherical caps are both forced to separate by the spring force after the impact and to eliminate the influence of the pivoting friction torque that is generated by the contact of two spherical caps on the stability of the isolated rolling platform. By virtue of finite element analysis and ground semi-physical simulation experiments, the feasibility of the design is verified. The experiment results show that the design can play an effectively protective role in anti-high overload, and the maximum deformation radius of the optimized point contact spherical cap structure can be reduced by 40.8%; after the upper and lower spherical caps are separated, the isolation rolling platform' capability of anti-high-speed rotation can be improved by 52% under the rotation speed of the main shaft at 10 r/s. In this way, the stability of the platform is improved, thus proving the value of the design method in engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071075PMC
http://dx.doi.org/10.3390/s20041131DOI Listing

Publication Analysis

Top Keywords

spherical caps
20
high overload
12
contact spherical
12
optimal design
8
overload buffer
8
buffer structure
8
passive semi-strapdown
8
semi-strapdown inertial
8
inertial navigation
8
navigation system
8

Similar Publications

Bacteria often attach to surfaces and grow densely-packed communities called biofilms. As biofilms grow, they expand across the surface, increasing their surface area and access to nutrients. Thus, the overall growth rate of a biofilm is directly dependent on its "range expansion" rate.

View Article and Find Full Text PDF

Lung alveoli are modeled as spherical caps, lined internally by a thin surfactant-laden liquid film, and the periodic wall shear stress exerted along the epithelium during small-amplitude radial oscillations of their wall is computed. A novel set of boundary conditions, applied at the rim, reveals the dominant role of Marangoni stresses. These stresses develop along the air/liquid interface due to spatial gradients of interfacial surfactant concentration and are transported to the wall by the action of viscosity.

View Article and Find Full Text PDF

Membrane curvature sensing and symmetry breaking of the M2 proton channel from Influenza A.

Elife

August 2024

Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.

The M2 proton channel aids in the exit of mature influenza viral particles from the host plasma membrane through its ability to stabilize regions of high negative Gaussian curvature (NGC) that occur at the neck of budding virions. The channels are homo-tetramers that contain a cytoplasm-facing amphipathic helix (AH) that is necessary and sufficient for NGC generation; however, constructs containing the transmembrane spanning helix, which facilitates tetramerization, exhibit enhanced curvature generation. Here, we used all-atom molecular dynamics (MD) simulations to explore the conformational dynamics of M2 channels in lipid bilayers revealing that the AH is dynamic, quickly breaking the fourfold symmetry observed in most structures.

View Article and Find Full Text PDF

Cells store triacylglycerol (TAG) within lipid droplets (LDs). A dynamic model describing complete LD formation at the endoplasmic reticulum (ER) membrane does not yet exist. A biochemical-biophysical model of LD synthesis is proposed.

View Article and Find Full Text PDF

Droplets are essential for spatially controlling biomolecules in cells. To work properly, cells need to control the emergence and morphology of droplets. On the one hand, driven chemical reactions can affect droplets profoundly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!