We developed a computational tool to assess the risks of novel coronavirus outbreaks outside of China. We estimate the dependence of the risk of a major outbreak in a country from imported cases on key parameters such as: (i) the evolution of the cumulative number of cases in mainland China outside the closed areas; (ii) the connectivity of the destination country with China, including baseline travel frequencies, the effect of travel restrictions, and the efficacy of entry screening at destination; and (iii) the efficacy of control measures in the destination country (expressed by the local reproduction number R loc ). We found that in countries with low connectivity to China but with relatively high R loc , the most beneficial control measure to reduce the risk of outbreaks is a further reduction in their importation number either by entry screening or travel restrictions. Countries with high connectivity but low R loc benefit the most from policies that further reduce R loc . Countries in the middle should consider a combination of such policies. Risk assessments were illustrated for selected groups of countries from America, Asia, and Europe. We investigated how their risks depend on those parameters, and how the risk is increasing in time as the number of cases in China is growing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073711PMC
http://dx.doi.org/10.3390/jcm9020571DOI Listing

Publication Analysis

Top Keywords

novel coronavirus
8
outbreaks china
8
number cases
8
destination country
8
travel restrictions
8
entry screening
8
loc countries
8
china
6
risk
5
risk assessment
4

Similar Publications

Background: The spread of the BA.5 Omicron variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has increased the number of hospitalized children. However, the impact of the spread of new omicron subvariants in children remains poorly described.

View Article and Find Full Text PDF

The viral protein mutations can modify virus-host interactions during virus evolution, and thus alter the extent of infection or pathogenicity. Studies indicate that nucleocapsid (N) protein of SARS-CoV-2 participates in viral genome assembly, intracellular signal regulation and immune interference. However, its biological function in viral evolution is not well understood.

View Article and Find Full Text PDF

Orthohantaviruses are emerging zoonotic viruses that can infect humans via the respiratory tract. There is an unmet need for an in vivo model to study infection of different orthohantaviruses in physiologically relevant tissue and to assess the efficacy of novel pan-orthohantavirus countermeasures. Here, we describe the use of a human lung xenograft mouse model to study the permissiveness for different orthohantavirus species and to assess its utility for preclinical testing of therapeutics.

View Article and Find Full Text PDF

Safety of two-dose schedule of COVID-19 adsorbed inactivated vaccine (CoronaVac; Sinovac/Butantan) and heterologous additional doses of mRNA BNT162b2 (Pfizer/BioNTech) in immunocompromised and immunocompetent individuals.

Rev Inst Med Trop Sao Paulo

January 2025

Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Divisão de Clínica de Moléstias Infecciosas e Parasitárias, Laboratório de Investigação Médica em Imunologia (LIM-48), SSão Paulo, São Paulo, Brazil.

Immunocompromised individuals were considered high-risk for severe disease due to SARS COV-2 infection. This study aimed to describe the safety of two doses of COVID-19 adsorbed inactivated vaccine (CoronaVac; Sinovac/Butantan), followed by additional doses of mRNA BNT162b2 (Pfizer/BioNTech) in immunocompromised (IC) adults, compared to immunocompetent/healthy (H) individuals. This phase 4, multicenter, open label study included solid organ transplant and hematopoietic stem cell transplant recipients, cancer patients and people with inborn errors of immunity with defects in antibody production, rheumatic, end-stage chronic kidney or liver disease, who were enrolled in the IC group.

View Article and Find Full Text PDF

Seasonal and periodic patterns in US COVID-19 mortality using the Variable Bandpass Periodic Block Bootstrap.

PLoS One

January 2025

Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, United States of America.

Since the emergence of the SARS-CoV-2 virus, research into the existence, extent, and pattern of seasonality has been of the highest importance for public health preparation. This study uses a novel bandpass bootstrap approach called the Variable Bandpass Periodic Block Bootstrap to investigate the periodically correlated components including seasonality within US COVID-19 mortality. Bootstrapping to produce confidence intervals for periodic characteristics such as the seasonal mean requires preservation of the periodically correlated component's correlation structure during resampling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!