Metal mixture toxicity across soil types is a daunting challenge to risk assessment. Here, we evaluated metal mixture toxicity in Oppia nitens, using ten fixed metal mixture ratios in five Canadian soils that closely matched some of the EU PNEC reference soils. Soils were dosed with five metals (Cu, Zn, Pb, Co, Ni) as single metals (ten concentrations) and as mixtures (eight concentrations). Synchronized adult mites were exposed to metals, with survival and reproduction assessed after 28 days. We found out that (i) the differences among soils in mite sensitivity and single metals were not consistent when mites were exposed to metal mixtures, (ii) assuming concentration addition, the mixture interaction factor (MIF) showed that single metal low effect levels excessively underestimated low level metal mixture effects (iii) Zn emerged as a protective metal in most mixtures, and (iv) Soil properties such as CEC, independent of effects on metal speciation, explained more of the variation than measured metals. This study suggests that metal risk assessment should be done on a case by case basis. Further work is needed to ensure that by protecting soil-dwelling organisms from single metals, the risk from metal mixtures is appropriately protected for.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122341DOI Listing

Publication Analysis

Top Keywords

metal mixture
20
mixture toxicity
12
single metals
12
metal mixtures
12
metal
11
single metal
8
oppia nitens
8
canadian soils
8
risk assessment
8
mites exposed
8

Similar Publications

Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal-Organic Frameworks.

Nanomicro Lett

January 2025

College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.

Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.

View Article and Find Full Text PDF

Imine Synthesis by Engineered d-Amino Acid Oxidase from Porcine Kidney.

ACS Omega

January 2025

Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.

Various symmetric and asymmetric imines were synthesized using the novel amine oxidase, obtained as variants of d-amino acid oxidase (pkDAO) from porcine kidney (Y228L/R283G) and (I230A/R283G). Active primary imines produced as intermediates in the oxidation of methylbenzylamine (MBA) derivatives were trapped by aliphatic, aromatic amines and diamines as nucleophiles forming new imines. ()-Fluoro-MBA was the best substrate for symmetric imine synthesis, providing almost stoichiometric conversion (100 mM) and achieving nearly 100% yield.

View Article and Find Full Text PDF

Metal-free photocatalysts derived from earth-abundant elements have drawn significant attention owing to their ample supply for potential large-scale applications. However, it is still challenging to achieve highly efficient photocatalytic performance owing to their sluggish charge separation and lack of active catalytic sites. Herein, we designed and constructed a series of covalently bonded organic semiconductors to enhance water splitting and phenol degradation.

View Article and Find Full Text PDF

Introduction: Heavy metal exposure has been associated with poor sleep, but little is known about the cumulative associations of multiple metals with sleep duration, particularly among adolescents. This study examined the association of blood lead (Pb), cadmium (Cd), and mercury (Hg) concentrations with sleep duration and possible effect modification by vitamin D.

Methods: The study sample consisted of 16-25-year-olds (n = 2637) from the 2011-2018 National Health and Nutrition Examination Survey.

View Article and Find Full Text PDF

Higher potential leaching of inorganic and organic additives from biodegradable compared to conventional agricultural plastic mulch film.

J Hazard Mater

January 2025

Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Geography, University of Bristol, Bristol BS8 1SS, UK.

Plastic mulch films support global food security, however, their composition and the potential release rates of organic, metal and metalloid co-contaminants remains relatively unknown. This study evaluates the low molecular weight organic additives, metal and metalloid content and leaching from low density polyethylene (LDPE) and biodegradable plastic mulch films. We identified 59 organic additives, and non-intentionally added substances in the new LDPE films (39.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!