In this study, single-chamber bioelectrochemical reactors (EMNS) were used to investigate the methane oxidation driven by sulfate and nitrite reduction with the auxiliary voltage. Results showed that the methane oxidation was simultaneously driven by sulfate and nitrite reduction, with more methane being converted using the auxiliary voltage. When the voltage was 1.6 V, the maximum removal rate was achieved at 8.05 mg L d. Carbon dioxide and methanol were the main products of methane oxidation. Simultaneously, nitrogen, nitrous oxide, sulfur ions, and hydrogen sulfide were detected as products of sulfate and nitrite reduction. Microbial populations were analyzed by qPCR and high-throughput sequencing. The detected methanotrophs included Methylocaldum sp., Methylocystis sp., Methylobacter sp. and M. oxyfera. The highest abundance of M. oxyfera was (3.97 ± 0.32) × 10 copies L in the EMNS-1.6. The dominant nitrite-reducing bacteria were Ignavibacterium sp., Hyphomicrobium sp., Alicycliphilus sp., and Anammox bacteria. Desulfovibrio sp., Desulfosporosinus sp. and Thiobacillus sp. were related to the sulfur cycle. Ignavibacterium sp., Thiobacillus sp. and Desulfovibrio sp. may transfer electrons with electrodes using humic acids as the electronic shuttle. The possible pathways included (1) Methane was mainly oxidized to carbon dioxide and dissolved organic matters by methanotrophs utilizing the oxygen produced by the disproportionation in the cells of M. oxyfera. (2) Nitrite was reduced to nitrogen by heterotrophic denitrifying bacteria with dissolved organic compounds. (3) Desulfovibrio sp. and Desulfosporosinus sp. reduced sulfate to sulfur ions. Thiobacillus sp. oxidized sulfur ions to sulfur or sulfate using nitrite as the electron acceptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.126259 | DOI Listing |
RSC Adv
January 2025
Laboratory of Clean Low-Carbon Energy, Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230023 PR China.
Crafting highly dispersed active metal sites on catalysts is an optimal method for improving the catalytic reactivity and stability, as it would improve atomic utilization efficiency, enhance reactant adsorption and activation ability through unique geometric and electronic properties. In this study, two synthesis methods were employed (ammonia evaporation (AE) and the impregnation method (IM)) to load Rh species onto the ZSM-5 support in order to attain tunable dispersivity, during which a 1.25-fold increase in the total yield of liquid oxygenated products (32 433.
View Article and Find Full Text PDFNanoscale
January 2025
Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland.
The strong influence of surface adsorbates on the morphology of a catalyst is exemplified by studying a silver surface with and without deposited zinc oxide nanoparticles upon exposure to reaction gases used for carbon dioxide hydrogenation. Ambient pressure X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements indicate accumulation of carbon deposits on the catalyst surface at 200 °C. While oxygen-free carbon species observed on pure silver show a strong interaction and decorate the atomic steps on the catalyst surface, this decoration is not observed for the oxygen-containing species observed on the silver surface with additional zinc oxide nanoparticles.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Indian Institute of Technology Hauz Khas Delhi New Delhi 110016 India
The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China University of Technology, School of Chemistry and Chemical Engineering, Wushan St., 510640, Guangzhou, CHINA.
An inevitable overoxidation process is considered as one of the most challenging problems in the direct conversion of methane (CH4) to methanol (CH3OH), which is limited by the uncontrollable cracking of key intermediates. Herein, we have successfully constructed a photocatalyst, the Fe-doped ZnO hollow polyhedron (Fe/ZnOHP), for the highly selective photoconversion of CH4 to CH3OH under mild conditions. In-situ experiments and density functional theory calculations confirmed that the introduction of Fe was able to decrease the energy level of the O 2p orbital, which passivated the activity of lattice oxygen in ZnO nanocrystals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!