Liposomes, lipid-based vesicular systems, have attracted major interest as a means to improve drug delivery to various organs and tissues in the human body. Recent literature highlights the benefits of liposomes for use as drug delivery systems, including encapsulating of both hydrophobic and hydrophilic cargos, passive and active targeting, enhanced drug bioavailability and therapeutic effects, reduced systemic side effects, improved cargo penetration into the target tissue and triggered contents release. Pioneering work of liposomes researchers led to introduction of long-circulating, ligand-targeted and triggered release liposomes, as well as, liposomes containing nucleic acids and vesicles containing combination of cargos. Altogether, these findings have led to widespread application of liposomes in a plethora of areas from cancer to conditions such as cardiovascular, neurologic, respiratory, skin, autoimmune and eye disorders. There are numerous review articles on the application of liposomes in treatment of cancer, which seems the primary focus, whereas other diseases also benefit from liposome-mediated treatments. Therefore, this article provides an illustrated detailed overview of liposomal formulations, in vitro characterization and their applications in different disorders other than cancer. Challenges and future directions, which must be considered to obtain the most benefit from applications of liposomes in these disorders, are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2020.102121 | DOI Listing |
Research (Wash D C)
January 2025
Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China.
Increasing evidence has shown that physical exercise remarkably inhibits oncogenesis and progression of numerous cancers and exercise-responsive microRNAs (miRNAs) exert a marked role in exercise-mediated tumor suppression. In this research, expression and prognostic values of exercise-responsive miRNAs were examined in breast cancer (BRCA) and further pan-cancer types. In addition, multiple independent public and in-house cohorts, in vitro assays involving multiple, macrophages, fibroblasts, and tumor cells, and in vivo models were utilized to uncover the tumor-suppressive roles of miR-29a-3p in cancers.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Cardiology, Yantaishan Hospital, Yantai, Shandong, China.
Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Curcumin has been observed to significantly reduce pathological processes associated with MI. Its clinical application is limited due to its low bioavailability, rapid degradation, and poor solubility.
View Article and Find Full Text PDFFront Microbiol
January 2025
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, Mexico.
With antibiotic resistance increasing in the global population every year, efforts to discover new strategies against microbial diseases are urgently needed. One of the new therapeutic targets is the bacterial cell membrane since, in the event of a drastic alteration, it can cause cell death. We propose the utilization of hydrophobic molecules, namely, propofol (PFL) and cannabidiol (CBD), dissolved in nanodroplets of oil, to effectively strike the membrane of two well-known pathogens: and .
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan.
Background: This study aims to enhance the delivery of polyphenols using nanotechnology.
Objective: To develop and evaluate liposomal formulations for improved delivery and stability of polyphenols, specifically focusing on Rutin.
Methods: Liposomal formulations were meticulously prepared via the Thin-Film Hydration method.
J Nanobiotechnology
January 2025
Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
Background: Osteoarthritis (OA) is a degenerative joint disease with an immense unmet medical need. FGF18 protein is a potential regenerative factor for cartilage repair. However, traditional protein delivery methods have limited efficacy due to the short lifetime and shallow infiltration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!