The Italian wolf (Canis lupus italicus) population has remained isolated South of the Alps for the last few thousand years. After a strong decline, the species has recolonized the Apennines and the Western Alps, while it is currently struggling to colonize the Eastern Alps. Recently, the species was detected in a lowland park connecting the Northern Apennines to the Central Alps. If the park was able to sustain a net wolf dispersal flow, this could significantly boost the connection with the Eastern Alps and the Dinaric-Balkan population. We investigated the suitability of the park as a functional ecological corridor for the wolf through the unhospitable lowland of Northern Italy. We collected wolf occurrence data in two study areas. We modeled species distribution running a separate ensemble model for each study area and then merging the output of the models to obtain an integrated suitability map. We used this map to identify corridors for the wolf adopting a factorial least-cost path and a cumulative resistant kernel approach. The connectivity models showed that only two corridors exist in the lowland areas between the Northern Apennines and the Central Alps. The Western corridor is a blind route, while the eastern corridor passes through the park and has a continuous course. However, the models also revealed a scarce resilience of corridor connectivity in the passageways between the park and the Apennines and the Prealps, which suggests that urgent management actions are necessary to ensure the future functionality of this important corridor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039448 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229261 | PLOS |
Sci Rep
January 2025
Senckenberg Deutsches Entomologisches Institut, Systematik und Biogeographie, Eberswalder Str. 90, 15374, Müncheberg, Germany.
The genus Erebia comprises numerous species in Europe. Due to preference of cold environments, most species have disjunct distributions in the European mountain systems. However, their biogeographical patterns may differ significantly.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
November 2024
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia Faculty of Environmental Protection, Velenje, Slovenia.
Red fox, Vulpes vulpes, is a globally distributed species characterized by its high adaptability to diverse habitats and a broad range of food resources. This remarkable adaptability has allowed the red fox to thrive in various environments, from urban areas to remote wilderness. In this study, we used a set of microsatellite markers for the comparative genetic analysis of red fox populations from two countries.
View Article and Find Full Text PDFBMC Res Notes
December 2024
Department of Biology, University of Padova, 35123 Via Ugo Bassi 58/B, Padova, Italy.
The adaxial leaf surface of butterworts (Pinguicula L.) presents specialized structures for carnivory, such as trichomes and sessile glands. The micromorphology of abaxial leaf surfaces has rarely been investigated; therefore, this study aimed to compare the micromorphology of adaxial and abaxial surfaces through electron scanning microscopy (SEM) and light microscopy (LM).
View Article and Find Full Text PDFAnn Bot
December 2024
Department of Forest and Soil Sciences, Institute of Silviculture, BOKU University; Peter-Jordan-Str. 82, AT-1190 Vienna, Austria.
Background And Aims: In Central Europe, the drought-tolerant downy oak (Quercus pubescens) is at the northern edge of its natural distribution range, often growing in small and spatially isolated populations. Here, we elucidate how the population genetic structure of Central European Q. pubescens was shaped by geographic barriers, genetic drift and introgression with the closely related sessile oak (Q.
View Article and Find Full Text PDFMicrobiologyopen
December 2024
Fondazione Edmund Mach, Research and Innovation Centre, Trento, Italy.
Changes in land use, climate, and host community are leading to increased complexity in eco-epidemiological relationships and the emergence of zoonoses. This study investigates the changes in the prevalence of several Ixodes ricinus-transmitted pathogens in questing ticks over a 10-year interval (2011-2013, 2020) in natural and agricultural habitats of the Autonomous Province of Trento (North-eastern Alps), finding an average prevalence of infection of 27.1%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!