Bisphenols, plasticisers used in food containers, can transfer to food. Bisphenol A (BPA) has been described as an endocrine disruptor and consequently banned from the food industry in several countries. It was replaced by a structural analogue, Bisphenol S (BPS). BPA action on the steroidogenesis is one of the mechanisms underlying its adverse effects on the efficiency of female reproduction. This study aimed to determine whether BPS is a safe alternative to BPA regarding GC functions. Antral follicles (2-6 mm), of approximatively 1000 adult ewe ovaries, were aspired and GC purified. For 48 h, ovine GC were treated with BPA or BPS (from 1 nM to 200 µM) and the effects on cell viability, proliferation, steroid production, steroidogenic enzyme expression and signalling pathways were investigated. Dosages at and greater than 100 μM BPA and 10 µM BPS decreased progesterone secretion by 39% (P < 0.001) and 22% (P = 0.040), respectively. BPA and BPS 10 μM and previously mentioned concentrations increased oestradiol secretion two-fold (P < 0.001 and P = 0.082, respectively). Only 100 µM BPA induced a decrease (P < 0.001) in gene expression of the enzymes of steroidogenesis involved in the production of progesterone. BPA reduced MAPK3/1 phosphorylation and ESR1 and ESR2 gene expression, effects that were not observed with BPS. BPA and BPS altered steroidogenesis of ovine GC. Thus, BPS does not appear to be a safe alternative for BPA. Further investigations are required to elucidate BPA and BPS mechanisms of action.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-19-0575DOI Listing

Publication Analysis

Top Keywords

bpa bps
16
bpa
11
bps
9
bps bpa
8
safe alternative
8
alternative bpa
8
gene expression
8
bisphenol impaired
4
impaired ovine
4
ovine granulosa
4

Similar Publications

Comprehensive assessment of the safety of bisphenol A and its analogs based on multi-toxicity tests in vitro.

J Hazard Mater

December 2024

National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

As substitutes for bisphenol A (BPA), bisphenol analogs (BPs) have raised concerns due to their frequent environmental detection and unclear safety. Here, the cytotoxicity, endocrine disruption, neurotoxicity, aryl hydrocarbon receptor (AhR) activity, and genotoxicity of nine BPs and BPA were evaluated in three types of cell lines. Over half of the tested BPs exhibited greater cytotoxicity than BPA, with IC50 values showing a linear correlation with Log (R²=0.

View Article and Find Full Text PDF

Comprehensive analysis of transplacental transfer of environmental pollutants detected in paired maternal and cord serums.

J Hazard Mater

December 2024

Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan 430079, China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, China. Electronic address:

Prenatal exposure to hazardous environmental pollutants is a critical global concern due to their confirmed presence in umbilical cord blood, indicating the ability of pollutants to cross the placental barrier and expose the fetus to harmful compounds. However, the transplacental transfer efficiencies (TTEs) of many pollutants remain underexplored. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantitatively analyze 91 environmental pollutants, including 13 bisphenols (BPs), 18 organophosphorus flame retardants (OPFRs), 7 brominated and other flame retardants (BFRs), 34 phthalates (PAEs), and 19 per- and polyfluoroalkyl substances (PFASs), in paired maternal and cord serums.

View Article and Find Full Text PDF

Concentrations, composition profiles, and in vitro-in silico-based mixture risk assessment of bisphenol A and its analogs in plant-based foods.

Environ Int

December 2024

Institute of Food Safety and Health Risk Assessment, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan. Electronic address:

The substitution of bisphenol A (BPA) with structurally similar analogs has raised concerns due to their comparable estrogenic activities. Considering the high consumption of plant-based foods, assessing the risks posed by bisphenols (BPs) in such dietary sources is essential. However, limited exposure and animal toxicological data on BP analogs hinder comprehensive risk assessments.

View Article and Find Full Text PDF

Bisphenols can enter the body, where they have potential adverse effects on human health, via different routes such as inhalation, dermally or orally. They are known as endocrine disrupting chemicals that activate signaling pathways by mimicking the estrogen actions. In this study, we aimed to investigate effects of bisphenol A (BPA), and its analogues bisphenol F (BPF) and bisphenol S (BPS) on MCF-10A cells and their impact mechanisms on autophagy, apoptosis and reduced glutathion levels.

View Article and Find Full Text PDF

Bisphenol S exposure interrupted human embryonic stem cell derived cardiomyocytes differentiation through ER-NF-κB/ERK signaling pathway.

Ecotoxicol Environ Saf

December 2024

Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China. Electronic address:

Bisphenol S (BPS) has been put into production as a wide range of Bisphenol A (BPA) alternatives, while little is known regarding its cardiac developmental toxicity. To explore the effect of BPS on cardiomyocyte differentiation and its mechanism, our study established the human embryonic stem cell-cardiomyocyte differentiation model (hESC-CM), which was divided into early period of differentiation (DP1:1-8d), anaphase period of differentiation (DP2:9-16d) and whole stage of differentiation (DP3:1-16d) exposed to human-related levels of BPS. We found that the survival rate of cardiomyocytes was more sensitive to BPS at the early stage of differentiation than at the anaphase stage of differentiation, and exposure to higher than 30 µg/mL BPS throughout the differentiation period decreased the expression of cTnT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!