Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Visual acuity (VA) measurement is utilized to test a subject's acuteness of vision. Conventional VA measurement requires a physician's assistance to ask a subject to speak out or wave a hand in response to the direction of an optotype. To avoid this repetitive testing procedure, different types of automatic VA tests have been developed in recent years by adopting contact-based responses, such as pushing buttons or keyboards on a device. However, contact-based testing is not as intuitive as speaking or waving hands, and it may distract the subjects from concentrating on the VA test. Moreover, problems related to hygiene may arise if all the subjects operate on the same testing device. To overcome these problems, we propose an intelligent VA estimation (iVAE) system for automatic VA measurements that assists the subject to respond in an intuitive, noncontact manner. VA estimation algorithms using maximum likelihood (VAML) are developed to automatically estimate the subject's vision by compromising between a prespecified logistic function and a machine-learning technique. The neural-network model adapts human learning behavior to consider the accuracy of recognizing the optotype as well as the reaction time of the subject. Furthermore, a velocity-based hand motion recognition algorithm is adopted to classify hand motion data, collected by a sensing device, into one of the four optotype directions. Realistic experiments show that the proposed iVAE system outperforms the conventional line-by-line testing method as it is approximately ten times faster in testing trials while achieving a logarithm of the minimum angle of resolution error of less than 0.2. We believe that our proposed system provides a method for accurate and fast noncontact automatic VA testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2020.2969520 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!