This paper addresses the problem of wall clutter mitigation and image reconstruction for through-wall radar imaging (TWRI) of stationary targets by seeking a model that incorporates low-rank (LR), joint sparsity (JS), and total variation (TV) regularizers. The motivation of the proposed model is that LR regularizer captures the low-dimensional structure of wall clutter; JS guarantees a small fraction of target occupancy and the similarity of sparsity profile among channel images; TV regularizer promotes the spatial continuity of target regions and mitigates background noise. The task of wall clutter mitigation and target image reconstruction is formulated as an optimization problem comprising LR, JS, and TV regularization terms. To handle this problem efficiently, an iterative algorithm based on the forward-backward proximal gradient splitting technique is introduced, which captures wall clutter and yields target images simultaneously. Extensive experiments are conducted on real radar data under compressive sensing scenarios. The results show that the proposed model enhances target localization and clutter mitigation even when radar measurements are significantly reduced.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2020.2973819DOI Listing

Publication Analysis

Top Keywords

wall clutter
16
clutter mitigation
12
radar imaging
8
total variation
8
image reconstruction
8
proposed model
8
clutter
5
target
5
compressive radar
4
imaging stationary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!