Reconfigurable Liquids Stabilized by DNA Surfactants.

ACS Appl Mater Interfaces

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Published: March 2020

Polyelectrolyte microcapsules can be produced either by the layer-by-layer assembly technique or the formation of polyelectrolyte complexes at the liquid-liquid interface. Here, we describe the design and construction of DNA microcapsules using the cooperative assembly of DNA and amine-functionalized polyhedral oligomeric silsesquioxane (POSS-NH) at the oil-water interface. "Janus-like" DNA surfactants (DNASs) assemble in situ at the interface, forming an elastic film. By controlling the jamming and unjamming behavior of DNASs, the interfacial assemblies can assume three different physical states: solid-like, elastomer-like, and liquid-like, similar to that seen with thermoplastics upon heating, that change from a glassy to a rubbery state, and then to a viscous liquid. By the interfacial jamming of DNASs, the liquid structures can be locked-in and reconfigured, showing promising potentials for drug delivery, biphasic reactors, and programmable liquid constructs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c01487DOI Listing

Publication Analysis

Top Keywords

dna surfactants
8
reconfigurable liquids
4
liquids stabilized
4
dna
4
stabilized dna
4
surfactants polyelectrolyte
4
polyelectrolyte microcapsules
4
microcapsules produced
4
produced layer-by-layer
4
layer-by-layer assembly
4

Similar Publications

Recent advances in genetics and epigenetics have provided critical insights into the pathogenesis of both idiopathic and non-idiopathic interstitial lung diseases (ILDs). Mutations in telomere-related genes and surfactant proteins have been linked to familial pulmonary fibrosis, while variants in MUC5B and TOLLIP increase the risk of ILD, including idiopathic pulmonary fibrosis and rheumatoid arthritis-associated ILD. Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs such as miR-21 and miR-29, regulate fibrotic pathways, influencing disease onset and progression.

View Article and Find Full Text PDF

Accurate DNA Sequence Prediction for Sorting Target-Chirality Carbon Nanotubes and Manipulating Their Functionalities.

ACS Nano

January 2025

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge.

View Article and Find Full Text PDF

Development and application of decontamination methods for the re-use of laboratory grade plastic pipette tips.

PLoS One

December 2024

Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America.

During the SARS-CoV-2 pandemic, a need for methods to decontaminate and reuse personal protective equipment (PPE) and medical plastics became a priority. In this investigation we aimed to develop a contamination evaluation protocol for laboratory pipette tips, after decontamination. Decontamination methods tested in this study included cleaning with a common laboratory detergent (2.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) present with unique physicochemical features and potential for functionalization as anticancer agents. Three-dimensional spheroid models can be used to afford greater tissue representation due to their heterogeneous phenotype and complex molecular architecture. This study developed an A549 alveolar carcinoma spheroid model for cytotoxicity assessment and mechanistic evaluation of functionalized AuNPs.

View Article and Find Full Text PDF

Nuclear lipids play roles in regulatory processes such as signaling, transcriptional regulation, and DNA repair. In this report, we demonstrate that nuclear lipids may contribute to Ki-67-regulated chromosome integrity during mitosis. In COS-7 cells, nuclear lipids are enriched at the perichromosomal layer and excluded from intrachromosomal regions during early mitosis, but are then detected in intrachromosomal regions during late mitosis, as revealed by TT-ExM, an improved expansion microscopy technique that enables high-sensitivity, super-resolution imaging of proteins, lipids, and nuclear DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!