Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper uses machine learning to enrich magnetic resonance angiography and magnetic resonance imaging acquisitions. A convolutional neural network is built and trained over a synthetic database linking geometrical parameters and mechanical characteristics of the arteries to blood flow rates and pressures in an arterial network. Once properly trained, the resulting neural network can be used in order to predict blood pressure in cerebral arteries noninvasively in nearly real-time. One challenge here is that not all input variables present in the synthetic database are known from patient-specific medical data. To overcome this challenge, a learning technique, which we refer to as implicit manifold learning, is employed: in this view, the input and output data of the neural network are selected based on their availability from medical measurements rather than being defined from the mechanical description of the arterial system. The results show the potential of the method and that machine learning is an alternative to costly ensemble based inversion involving sophisticated fluid structure models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cnm.3325 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!