Directive Effect of Chain Length in Modulating Peptide Nano-assemblies.

Protein Pept Lett

Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, India.

Published: February 2021

Background: RADA-4 (Ac-RADARADARADARADA-NH2) is the most extensively studied and marketed self-assembling peptide, forming hydrogel, used to create defined threedimensional microenvironments for cell culture applications.

Objectives: In this work, we use various biophysical techniques to investigate the length dependency of RADA aggregation and assembly.

Methods: We synthesized a series of RADA-N peptides, N ranging from 1 to 4, resulting in four peptides having 4, 8, 12, and 16 amino acids in their sequence. Through a combination of various biophysical methods including thioflavin T fluorescence assay, static right angle light scattering assay, Dynamic Light Scattering (DLS), electron microscopy, CD, and IR spectroscopy, we have examined the role of chain-length on the self-assembly of RADA peptide.

Results: Our observations show that the aggregation of ionic, charge-complementary RADA motifcontaining peptides is length-dependent, with N less than 3 are not forming spontaneous selfassemblies.

Conclusion: The six biophysical experiments discussed in this paper validate the significance of chain-length on the epitaxial growth of RADA peptide self-assembly.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929866527666200224114627DOI Listing

Publication Analysis

Top Keywords

light scattering
8
directive chain
4
chain length
4
length modulating
4
modulating peptide
4
peptide nano-assemblies
4
nano-assemblies background
4
background rada-4
4
rada-4 ac-radaradaradarada-nh2
4
ac-radaradaradarada-nh2 extensively
4

Similar Publications

Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.

Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).

View Article and Find Full Text PDF

Monte Carlo-based realistic simulation of optical coherence tomography angiography.

Biomed Opt Express

January 2025

Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Optical coherence tomography angiography (OCTA) offers unparalleled capabilities for non-invasive detection of vessels. However, the lack of accurate models for light-tissue interaction in OCTA jeopardizes the development of the techniques to further extract quantitative information from the measurements. In this manuscript, we propose a Monte Carlo (MC)-based simulation method to precisely describe the signal formation of OCTA based on the fundamental theory of light-tissue interactions.

View Article and Find Full Text PDF

The ability to significantly enhance near-field coupling between light and matter at the nanoscale is crucial for advancing the fields of nanophotonics and nanopolariotonics. However, conventional probes face challenges in achieving optimal light-matter interaction. In this study, we propose a novel, to the best of our knowledge, simulation-based strategy that leverages tip engineering to dramatically amplify the scattering field through tailored double-layer geometries.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a treatment modality clinically approved for several oncologic indications, including esophageal and endobronchial cancers, precancerous conditions including Barrett's esophagus and actinic keratosis, and benign conditions like age-related macular degeneration. While it is currently clinically underused, PDT is an area of significant research interest. Because PDT relies on the absorption of light energy by intrinsic or administered absorbers, the dosimetric quantity of interest is the absorbed energy per unit mass of tissue, proportional to the fluence rate of light in tissue.

View Article and Find Full Text PDF

Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!