The photoluminescence (PL), color purity, and stability of lead halide perovskite nanocrystals depend critically on surface passivation. We present a study on the temperature-dependent PL and PL decay dynamics of lead bromide perovskite nanocrystals characterized by different types of A cations, surface ligands, and nanocrystal sizes. Throughout, we observe a single emission peak from cryogenic to ambient temperature. The PL decay dynamics are dominated by surface passivation, and a postsynthesis ligand exchange with a quaternary ammonium bromide (QAB) results in more stable passivation over a larger temperature range. The PL intensity is highest from 50 to 250 K, which indicates that ligand binding competes with the thermal energy at ambient temperature. Despite the favorable PL dynamics of nanocrystals passivated with QAB ligands (monoexponential PL decay over a large temperature range, increased PL intensity and stability), surface passivation still needs to be improved to achieve maximum emission intensity in nanocrystal films.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997568PMC
http://dx.doi.org/10.1021/acs.jpclett.0c00266DOI Listing

Publication Analysis

Top Keywords

perovskite nanocrystals
12
surface passivation
12
lead bromide
8
bromide perovskite
8
decay dynamics
8
ambient temperature
8
temperature range
8
surface
5
composition- size-
4
size- surface
4

Similar Publications

Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br)-Silica Composite Film for Blue-Light-Emitting Diodes.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).

View Article and Find Full Text PDF

Collective optical properties can emerge from an ordered ensemble of emitters due to interactions between the individual units. Superlattices of halide perovskite nanocrystals exhibit collective light emission, influenced by dipole-dipole interactions between simultaneously excited nanocrystals. This coupling changes both the emission energy and rate compared to the emission of uncoupled nanocrystals.

View Article and Find Full Text PDF

We report the synthesis of ethylammonium lead iodide (EAPbI) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large -cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI nanocrystals are highly unstable, evolving to a nonperovskite δ-EAPbI polymorph within 1 day.

View Article and Find Full Text PDF

Enabling Multicolor Information Encryption: Oleylammonium-Halide-Assisted Reversible Phase Conversion between CsPbX and CsPbX Nanocrystals.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China.

Recently, halide perovskites have been recognized for their thermochromic characteristics, showing significant potential in information encryption applications. However, the limited luminescence color gamut hinders the encryption of complex multicolor information. Herein, for the first time, multicolor thermochromic perovskites with luminescence covering the entire visible spectrum have been designed.

View Article and Find Full Text PDF

Compositionally Tunable Magneto-optical Properties of Lead-Free Halide Perovskite Nanocrystals.

J Phys Chem Lett

December 2024

Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

Inorganic lead-free metal halide perovskites have garnered much attention as low-toxicity alternatives to lead halide perovskites for luminescence and photovoltaic applications. However, the electronic structure and properties of these materials, including the composition dependence of the band structure, spin-orbit coupling, and Zeeman effects, remain poorly understood. Here, we investigated vacancy-ordered CsBiX (X= Cl, Br) perovskite nanocrystals using magnetic circular dichroism spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!