Copper resistance genes of Burkholderia cenocepacia H111 identified by transposon sequencing.

Environ Microbiol Rep

Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.

Published: April 2020

Copper is an essential element but in excess is highly toxic and therefore cytoplasmic levels must be tightly controlled. Member of the genus Burkholderia are highly resistant to various heavy metals and are often isolated from acidic soils where copper bioavailability is high. In this study, we employed transposon sequencing (Tn-Seq) to identify copper resistance genes in Burkholderia cenocepacia H111. We identified a copper efflux system that shares similarities with the plasmid-based copper detoxification systems found in Escherichia coli and Pseudomonas syringae. We also found that several of the identified resistance determinants are involved in maintaining the integrity of the cell envelope, suggesting that proteins located in the outer membrane and periplasmic space are particularly sensitive to copper stress. Given that several of the resistance genes are required for the repair and turnover of misfolded proteins, we suggest that copper toxicity is caused by protein damage rather than by oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1758-2229.12828DOI Listing

Publication Analysis

Top Keywords

resistance genes
12
copper
8
copper resistance
8
genes burkholderia
8
burkholderia cenocepacia
8
cenocepacia h111
8
h111 identified
8
transposon sequencing
8
identified transposon
4
sequencing copper
4

Similar Publications

Draft genome sequencing of a multidrug-resistant strain MBBL2 isolated from mastitic cow milk.

Microbiol Resour Announc

January 2025

Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh.

Milk from cows with mastitis is a primary source of bacteria harboring antibiotic resistance genes (ARGs), including . We present the genome sequence of strain MBBL2 isolated from mastitic cow milk, which contains numerous ARGs and virulence-associated genes potentially pathogenic to humans.

View Article and Find Full Text PDF

is a predominant cause of post-operative surgical site infections and persistent bacteremia. Here, we describe a patient who experienced three episodes of infection over a period of 4 months following a total knee arthroplasty. The initial bloodstream isolate (SAB-0429) was a clonal complex 5 (CC5) and methicillin-resistant (MRSA), whereas two subsequent isolates (SAB-0485 and SAB-0495) were CC5 isolates but methicillin-sensitive .

View Article and Find Full Text PDF

We present a laboratory module that uses isolation of antibiotic-resistant bacteria from locally collected stream water samples to introduce undergraduate students to basic microbiological culture-based and molecular techniques. This module also educates them on the global public health threat of antibiotic-resistant organisms. Through eight laboratory sessions, students are involved in quality testing of water sources from their neighborhoods, followed by isolation of extended-spectrum beta-lactamase-producing .

View Article and Find Full Text PDF

Protein engineering has emerged as a powerful approach toward the development of novel therapeutics targeting the MYC/MAX/E-box network, an active driver of >70% of cancers. The MYC/MAX heterodimer regulates numerous genes in our cells by binding the Enhancer box (E-box) DNA site and activating the transcription of downstream genes. Traditional small molecules that inhibit MYC face significant limitations that include toxic effects, drug delivery challenges, and resistance.

View Article and Find Full Text PDF

<b>Background and Objective:</b> It is well documented that Whole Genome Sequencing (WGS) has recently used to explore new resistance patterns and track the dissemination of extensive and pan drug-resistant microbes in healthcare settings. This article explores the link between traumatic infections caused by road traffic accidents (RTAs) leading to coma and the development of chest infections caused by extensively drug-resistant (XDR) <i>Klebsiella pneumoniae</i> and <i>Pseudomonas aeruginosa</i>. <b>Materials and Methods:</b> The study was carried out from March to December 2022 which included a 45-year-old male patient admitted to the ICU of Al Ramadi Teaching Hospitals following a severe RTA that resulted in a TBI and subsequent coma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!