Diffusion tensor imaging (DTI) can be used to index white matter integrity of the corticospinal tract (CST) after stroke; however, the psychometric properties of DTI-based measures of white matter integrity are unknown. The purpose of this study was to examine test-retest reliability as determined by intraclass correlation coefficients (ICC) and calculate minimal detectable change (MDC) of DTI-based measures of CST integrity using three different approaches: a Cerebral Peduncle approach, a Probabilistic Tract approach, and a Tract Template approach. Eighteen participants with chronic stroke underwent DTI on the same magnetic resonance imaging scanner 4 days apart. For the Cerebral Peduncle approach, a researcher hand drew masks at the cerebral peduncle. For the Probabilistic Tract approach, tractography was seeded in motor areas of the cortex to the cerebral peduncle. For the Tract Template approach, a standard CST template was transformed into native space. For all approaches, the researcher performing analyses was blind to participant number and day of data collection. All three approaches had good to excellent test-retest reliability for fractional anisotropy (FA; ICCs >0.786). Mean diffusivity, axial diffusivity, and radial diffusivity were less reliable than FA. The ICC values were highest and MDC values were the smallest for the most automated approach (Tract Template), followed by the combined manual/automated approach (Probabilistic Tract) then the manual approach (Cerebral Peduncle). The results of this study may have implications for how DTI-based measures of CST integrity are used to define impairment, predict outcomes, and interpret change after stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268047 | PMC |
http://dx.doi.org/10.1002/hbm.24961 | DOI Listing |
Transl Psychiatry
January 2025
Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Introduction: While cerebral amyloid angiopathy is likely responsible for intracerebral hemorrhage (ICH) occurring in superficial (grey matter, vermis) cerebellar locations, it is unclear whether hypertensive arteriopathy (HA), the other major cerebral small vessel disease (cSVD), is associated with cerebellar ICH (cICH) in deep (white matter, deep nuclei, cerebellar peduncle) regions. We tested the hypothesis that HA-associated neuroimaging markers are significantly associated with deep cICH compared to superficial cICH.
Patients And Methods: Brain MRI scans from consecutive non-traumatic cICH patients admitted to a referral center were analyzed for cSVD markers.
Front Neural Circuits
January 2025
Department of Advanced Medical and Surgical Sciences, Advanced MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy.
The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.
View Article and Find Full Text PDFZool Res
January 2025
Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong 266071, China. E-mail:
Substantial evidence points to the early onset of peripheral inflammation in the development of Parkinson's disease (PD), supporting the "body-first" hypothesis. However, there remains a notable absence of PD-specific animal models induced by inflammatory cytokines. This study introduces a novel mouse model of PD driven by the proinflammatory cytokine CXCL1, identified in our previous research.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
Gut inflammation is a salient prodromal feature of Parkinson's disease (PD) implicated in pathologic processes leading to nigrostriatal dopaminergic degeneration. However, existing rodent models of PD are suboptimal for investigating the interaction between gut inflammation and neuropathology. This study aimed to develop a rat model of PD in which gut inflammation exacerbated PD symptoms induced by a parkinsonian lesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!