For realization of a wearable artificial kidney based on regeneration of a small volume of dialysate, efficient urea removal from dialysate is a major challenge. Here a potentially suitable polymeric sorbent based on phenylglyoxaldehyde (PGA), able to covalently bind urea under physiological conditions, is described. Sorbent beads containing PGA groups were obtained by suspension polymerization of either styrene or vinylphenylethan-1-one (VPE), followed by modification of the aromatic groups of poly(styrene) and poly(VPE) into PGA. It was found that PGA-functionalized sorbent beads had maximum urea binding capacities of 1.4-2.2 mmol/g and removed ∼0.6 mmol urea/g in 8 h at 37 °C under static conditions from urea-enriched phosphate-buffered saline, conditions representative of dialysate regeneration. This means that the daily urea production of a dialysis patient can be removed with a few hundred grams of this sorbent which, is an important step forward in the development of a wearable artificial kidney.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027168 | PMC |
http://dx.doi.org/10.1021/acsapm.9b00948 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Institute of Regenerative Medicine, LifeNet Health, VA Beach, VA 23453, USA.
: Liver diseases are a global health concern. Many in vitro liver models utilize cryopreserved primary human hepatocytes (PHHs), which commonly undergo post-thaw processing through colloidal silica gradients to remove debris and enrich for a viable PHH population. Post-thaw processing effects on healthy PHHs are partially understood, but the consequences of applying disease-origin PHHs to post-thaw density gradient separation have not been described.
View Article and Find Full Text PDFWater Res
January 2025
School of Science, RMlT University, Melbourne, VC 3000. Australia.
Electrochemical recovery of zero-valent sulfur (S) from thiourea (TU) wastewater offers a promising waste-to-value strategy that expects to promote the sulfur resource cycle in water treatment but still suffer from electrode poisoning and sulfur over-oxidation. Herein, we designed a metal-free CNT electrochemical membrane for selective oxidation of thiourea and recovery of S. We found that defect sites on the carbon nanotube surface enable direct electron transfer for thiourea oxidation and may form carbon-sulfur bridge bonds, thereby facilitating the generation of S and urea.
View Article and Find Full Text PDFWater Res
January 2025
Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, PR China; Chongqing Research Institute, Jilin University, 401120 Chongqing, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, PR China. Electronic address:
Efficient nutrient recovery from source-separated urine is vital for wastewater treatment, with microalgae as a promising solution. However, bisphenol A (BPA) in urine can hinder microalgal resource recovery and pose water quality risks. The role of plant hormones in enhancing microalgal growth and pollutant removal is known, but their impact on BPA-laden urine treatment is not well-studied.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France.
Microbial induced carbonate precipitation (MICP) shows great potential for metals recovery from secondary sources, which is vital for circular economy. This study explores the feasibility of using Sporosarcina pasteurii for MICP to recover copper (Cu) and zinc (Zn) from acidogenic anaerobic digestates at laboratory scale. Pre-cultured S.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: The prevalence of chronic kidney disease (CKD) is estimated to be about 13.4% worldwide. Studies have shown that CKD accounts for up to 2% of the health cost burden.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!