Transcription Inhibition by PNA-Induced R-Loops.

Methods Mol Biol

Department of Biology, Stanford University, Stanford, CA, USA.

Published: January 2021

R-loops are structures consisting of an RNA-DNA duplex and an unpaired DNA strand. They can form during transcription upon nascent RNA "threadback" invasion into the DNA duplex to displace the non-template DNA strand. R-loops occur naturally in all kingdoms of life, and they have multiple biological effects. Therefore, it is of interest to study the artificial induction of R-loops and to monitor their effects in model in vitro systems to learn mechanisms. Here we describe transcription blockage in vitro by R-loop formation induced by peptide nucleic acid (PNA) binding to the non-template DNA strand.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0243-0_8DOI Listing

Publication Analysis

Top Keywords

dna strand
12
non-template dna
8
transcription inhibition
4
inhibition pna-induced
4
r-loops
4
pna-induced r-loops
4
r-loops r-loops
4
r-loops structures
4
structures consisting
4
consisting rna-dna
4

Similar Publications

The Ataxia-telangiectasia mutated (ATM) is the most important gene for repairing the DNA in Myelodysplastic Neoplasm.

DNA Repair (Amst)

January 2025

Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil.

Myelodysplastic Neoplasm (MDS) is a cancer associated with aging, often leading to acute myeloid leukemia (AML). One of its hallmarks is hypermethylation, particularly in genes responsible for DNA repair. This study aimed to evaluate the methylation and mutation status of DNA repair genes (single-strand - XPA, XPC, XPG, CSA, CSB and double-strand - ATM, BRCA1, BRCA2, LIG4, RAD51) in MDS across three patient cohorts (Cohort A-56, Cohort B-100, Cohort C-76), using methods like pyrosequencing, real-time PCR, immunohistochemistry, and mutation screening.

View Article and Find Full Text PDF

Objective: To study the subcutaneous adipose tissue (SAT) transcriptome in people with HIV (PWH) switching efavirenz (EFV) or a protease inhibitor (PI) to raltegravir and to compare the transcriptome of PWH to those of people without HIV (PWoH).

Design: PWH (n = 36) on EFV (n = 22) or a PI (n = 14) based ART regimen were randomized to switch to RAL (n = 15) or to continue unchanged medication (n = 17). PWoH (n = 10), comparable in age and body mass index, were included for comparison.

View Article and Find Full Text PDF

Protocol to Retrieve Unknown Flanking DNA Using Fork PCR for Genome Walking.

Bio Protoc

January 2025

International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, China.

PCR-based genome walking is one of the prevalent techniques implemented to acquire unknown flanking genomic DNAs. The worth of genome walking includes but is not limited to cloning full-length genes, mining new genes, and discovering regulatory regions of genes. Therefore, this technique has advanced molecular biology and related fields.

View Article and Find Full Text PDF

RecQ helicases, highly conserved proteins with pivotal roles in DNA replication, DNA repair and homologous recombination, are crucial for maintaining genomic integrity. Mutations in RECQL4 have been associated with various human diseases, including Rothmund-Thomson syndrome. RECQL4 is involved in regulating major DNA repair pathways, such as homologous recombination and nonhomologous end joining (NHEJ).

View Article and Find Full Text PDF

Phosphorylation-dependent WRN-RPA interaction promotes recovery of stalled forks at secondary DNA structure.

Nat Commun

January 2025

Mechanisms, Biomarkers and Models Section - Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161, Rome, Italy.

The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!