AI Article Synopsis

  • The combination of Ayurvedic wisdom and nanotechnology offers potential solutions to complex healthcare issues.
  • A one-pot hydrothermal synthesis method was used to create blue fluorescent carbon dots (AAPCDs) from the Ayurvedic plant Andrographis paniculata, with a quantum yield of 15.10%.
  • AAPCDs demonstrated minimal cytotoxicity and were effective in cellular imaging and sensing free radicals, indicating their promise for pharmaceutical and biomedical applications.

Article Abstract

The combination of an Ayurvedic wisdom and nanotechnology may help us to resolve the complex healthcare challenges. A facile and economical one-pot hydrothermal synthesis method has been adopted for preparing a blue fluorescent carbon dots (CDs) with a quantum yield of 15.10% from an Ayurvedic medicinal plant Andrographis paniculata (AP). The Andrographis paniculata derived CDs (AAPCDs) were then characterized using different techniques. Through High Performance Thin Layer Chromatography (HPTLC) profiling of the AP extract and the CDs, it was found that some of the phytoconstituents are retained as such while others may have been converted into their derivatives during the process of formation of CDs. The CDs are designed to possess cellular imaging of human breast carcinoma cells (MCF-7), apart from free radicals sensing and scavenging capabilities. AAPCDs showed minimal cytotoxicity in Multi Drug Resistant clinically isolated strains of gram positive and gram negative bacteria which may be employed for microbiology oriented experiments. These results suggest potential of multi-functional AAPCDs as nano-probes for various pharmaceutical, biomedical and bioengineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-020-02515-0DOI Listing

Publication Analysis

Top Keywords

carbon dots
8
ayurvedic medicinal
8
medicinal plant
8
andrographis paniculata
8
cds
5
multi-functional carbon
4
dots ayurvedic
4
plant cancer
4
cancer cell
4
cell bioimaging
4

Similar Publications

Abdominal aortic aneurysm (AAA) is a cardiovascular disease with potentially fatal consequences, yet effective therapies to prevent its progression remain unavailable. Oxidative stress is associated with AAA development. Carbon dots have reactive oxygen species-scavenging activity, while green tea extract exhibits robust antioxidant properties.

View Article and Find Full Text PDF

Nanozymes, a revolutionary category of engineered artificial enzymes based on nanomaterials, have been developed to overcome the inherent limitations of natural enzymes, such as the high cost associated with storage and their fragility. Carbon dots (CDs) have emerged as compelling candidates for various applications due to their versatile properties. Particularly noteworthy are CDs with a range of surface functional groups that exhibit enzyme-like behavior, combining exceptional performance with catalytic capabilities.

View Article and Find Full Text PDF

Purpose: During fixed orthodontic treatment, oral hygiene is difficult to ensure and can easily lead to an imbalance in the oral micro-ecological balance. In this study, based on the adhesive properties of polydopamine (PDA) and the good antimicrobial and remineralization properties of carboxymethyl chitosan (CMC) and xylitol (Xy), new nanocomposites with both antimicrobial and remineralization capabilities were prepared to coat on orthodontic brackets.

Methods: Composite carbon dots (CDs) were synthesized using carboxymethyl chitosan and xylitol, we characterized them and the antimicrobial properties of the CMC-Xy-CDs were investigated by co-cultivation with S.

View Article and Find Full Text PDF

L-tryptophan carbon dots as a fluorescent probe for malachite green detection.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Electronics, School of Electrical and Electronics Engineering, SASTRA deemed to be University, Thanjavur 613401, India. Electronic address:

Development of a rapid and sensitive detection method for hazardous dyes attracts considerable research interest. In this work, L-Tryptophan-based Carbon dots were developed as a fluorescence sensor for the detection of Malachite green (MG). Green fluorescent L-Trp-C-dots were synthesized by a simple pyrolysis technique using L-Trp as the starting precursor.

View Article and Find Full Text PDF

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!