The Pseudo-Response Regulator 2 gene was identified in the c1 locus, representing a genetic factor regulating fruit color in pepper using GBS-based BSA-seq. The loci c1, c2, and y have been widely reported as genetic determinants of various ripe fruit colors in pepper. However, c1, which may impact reduced pigmentation in red, orange, and yellow fruits, is not well understood. Two cultivars showing peach or orange fruit in Capsicum chinense 'Habanero' were found to have c2 mutation and were hypothesized to segregate c1 locus in the F population. Habanero peach (HP) showed a reduced level of chlorophylls, carotenoids and total soluble solids in immature and ripe fruits. A microscopic examination of the fruit pericarps revealed smaller plastids and less stacked thylakoid grana in HP. The expression of many genes related to chlorophyll and carotenoid biosynthetic pathways were reduced in HP. To identify the genomic region of the c1 locus, bulked segregant analysis combined with genotyping-by-sequencing was employed on an F population derived from a cross between Habanero orange and HP. One SNP at chromosome 1 was strongly associated with the peach fruit color. Pepper Pseudo-Response Regulator 2 (PRR2) was located close to the SNP and cosegregated with the peach fruit color. A 41 bp deletion at the third exon-intron junction region of CcPRR2 in HP resulted in a premature termination codon. A nonsense mutation of CaPRR2 was found in C. annuum 'IT158782' which had white ripe fruit coupled with null mutations of capsanthin-capsorubin synthase (y) and phytoene synthase 1 (c2). These results will be useful for the genetic improvement in fruit color and nutritional quality in pepper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-020-03565-5 | DOI Listing |
Compr Rev Food Sci Food Saf
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
Fruits and vegetables offer substantial nutritional and health benefits, but their short shelf life necessitates effective preservation methods. Conventional drying techniques, while efficient, often lead to deterioration in food quality. Recent advancements highlight the potential of infrared blanching (IRB) as a preparatory process to improve drying outcomes.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche (UNIVPM), Via Brecce Bianche 10, 60131 Ancona, Italy.
Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Tumbaco Experimental Farm, Santa Catalina Research Site, National Institute of Agricultural Research (INIAP), Tumbaco 170902, Ecuador.
The physicochemical properties of fruits at different maturity stages using grafting technology are of great importance since grafting can alter the nutritional and functional parameters of the fruit. In this study, grafted yellow pitahaya ( Haw.) fruit, grown on live tutors, was evaluated from stages 0 to 5.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh P.O. Box 2460, Saudi Arabia.
The post-harvest management of fruit is crucial to preventing its decay and loss. Generally, edible coatings are applied to fruit to avoid decay and microbial contamination. We have used ultrasonication to synthesize TiO and residue-derived biosilica embedded in gum arabic nanocomposite.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Somlói út 14-16., H-1118 Budapest, Hungary.
The processing of beans begins with a particularly time-consuming procedure, the hydration of the seeds. Ultrasonic treatment (US) represents a potential environmentally friendly method for process acceleration, while near-infrared spectroscopy (NIR) is a proposedly suitable non-invasive monitoring tool to assess compositional changes. Our aim was to examine the hydration process of red kidney beans of varying sizes and origins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!