The role of the medial olivocochlear (MOC) reflex has been investigated by assessing changes of cochlear responses (CR) in humans. The CR consists of pre-neural and neural potentials originating from the inner ear, and at high signal levels is dominated by cochlear microphonic (CM). The CM originates from the outer hair cells, where the MOC fibers synapse, and there is little research about using it to investigate the MOC reflex in humans. The current study aimed to investigate the effect of contralateral activation of the MOC reflex on the CR in humans. The CR was recorded in female adults (n = 16) to 500 and 2000 Hz tone burst stimuli presented at 80 dB nHL with and without contralateral broadband noise (CBBN) at 40 dB SPL. Two different methods were utilized to quantify and analyze the CR data: peak amplitude and power spectrum. Results revealed enhancement of the CR amplitude with activation of the MOC reflex. Furthermore, on average, enhancement in the CR amplitude was observed to 500 Hz, but not 2000 Hz stimulus. The CR power spectrum findings revealed similar findings to the peak amplitude. These findings indicate the MOC effect is measurable when using a low frequency stimulus, but not high frequency. Moreover, the CR could be used as a potential tool to study the MOC reflex in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2020.107925DOI Listing

Publication Analysis

Top Keywords

moc reflex
20
reflex humans
12
medial olivocochlear
8
contralateral activation
8
high frequency
8
activation moc
8
peak amplitude
8
power spectrum
8
enhancement amplitude
8
moc
7

Similar Publications

Previous physiological and psychophysical studies have explored whether feedback to the cochlea from the efferent system influences forward masking. The present work proposes that the limited growth-of-masking (GOM) observed in auditory nerve (AN) fibers may have been misunderstood; namely, that this limitation may be due to the influence of anesthesia on the efferent system. Building on the premise that the unanesthetized AN may exhibit GOM similar to more central nuclei, the present computational modeling study demonstrates that feedback from the medial olivocochlear (MOC) efferents may contribute to GOM observed physiologically in onset-type neurons in both the cochlear nucleus and inferior colliculus (IC).

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the human medial olivocochlear (MOC) reflex by analyzing how contralateral acoustic stimulation (CAS) affects cochlear microphonic (CM) responses at different frequencies.
  • The researchers used a frequency-swept probe tone in young adults and noted significant increases in CM magnitude, particularly between 354 to 1414 Hz, influenced by various factors like participant differences and sound conditions.
  • The findings revealed that changes in CM magnitude and phase due to CAS are distinct from those observed in otoacoustic emissions (OAEs), suggesting complementary effects related to different parts of the cochlea.
View Article and Find Full Text PDF

Medial olivocochlear (MOC) efferents modulate outer hair cell motility through specialized nicotinic acetylcholine receptors to support encoding of signals in noise. Transgenic mice lacking the alpha9 subunits of these receptors (α9KOs) have normal hearing in quiet and noise, but lack classic cochlear suppression effects and show abnormal temporal, spectral, and spatial processing. Mice deficient for both the alpha9 and alpha10 receptor subunits (α9α10KOs) may exhibit more severe MOC-related phenotypes.

View Article and Find Full Text PDF

This study assessed whether the effects of contralateral acoustic stimulation (CAS) are consistent with eliciting the medial olivocochlear (MOC) reflex for measurements sensitive to outer hair cell (otoacoustic emissions, OAEs), auditory-nerve (AN; compound action potential, CAP), and brainstem/cortical (envelope-following response, EFR) function. The effects of CAS were evaluated for simultaneous measurement of OAEs, CAPs, and EFRs in participants with normal hearing. Clicks were presented at 40 or 98 Hz in three ipsilateral noise conditions (no noise, 45 dB SPL, and 55 dB SPL).

View Article and Find Full Text PDF

Objectives: Type 1 diabetes (T1D) has been associated with several comorbidities such as ocular, renal, and cardiovascular complications. However, the effect of T1D on the auditory system and sensorineural hearing loss (SNHL) is still not clear. The aim of this study was to conduct a systematic review to evaluate whether T1D is associated with hearing impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!