Biochar is a pyrogenous organic material resulting from the pyrolysis of organic residues, which is attracting the interest from researchers and farmers for its potential to sequester carbon and its use as soil ameliorant. Pyrolysis conditions and feedstock determine the properties of the biochars produced. In order to understand the relationship between these variables we analysed in detail the physical, chemical and surface characteristics of biochars produced from three contrasting agronomic residues abundantly generated in South Spain, such as rice husk (RH), olive pit (OP) and pruning remains of olive trees (mainly composed of olive branches and leaves; OB), using a temperature range from 350 to 600 °C and residence times from 0.5 to 4 h. High pyrolysis temperature (600 °C) and time resulted in the greatest pH and C content in the biochars. In general, elemental composition and ash content were dependent on the type of organic waste used as feedstock. C Nuclear Magnetic Resonance Spectroscopy and thermal (TG-DSC) analyses showed that temperatures ≥500 °C are needed to achieve a high degree of aromatization of the chars. Micro-computed tomography and field emission scanning electron microscopy revealed that the structure of RH was preserved during the pyrolysis process, favouring a greater porosity for these biochars. These data are very useful for the production of stable biochars obtained from residual biomass, maximising the value of residual biomass resources. These biochars show physical and chemical properties, such as adequate pH, high water retention capacity or high porosity, of interest for their use as soil amendments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2020.02.013 | DOI Listing |
Environ Sci Ecotechnol
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.
View Article and Find Full Text PDFStay-green sorghum varieties are known for their drought resistance and ability to retain green biomass during grain filling, making them crucial for sustainable agriculture in arid regions. However, there is limited information on their stover yield (SY) and nutritional quality when both grain and forage are harvested. This study assessed five stay-green sorghum varieties at the Bako Agricultural Research Centre using a randomized complete block design with three replications in 2020, 2021, and 2022.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China.
Soil heavy metal contamination and sludge disposal have become globally environmental issues problems of great concern. Utilizing sludge pyrolysis to produce biochar for remediating heavy metal-contaminated soil is an effective strategy to solve these two environmental problems. In this study, municipal sewage sludge and papermaking sludge were used as feedstock to prepare co-pyrolyzed biochar, which was then applied to reduce the toxicity of Cd in soil.
View Article and Find Full Text PDFSci Total Environ
January 2025
Leiden University, Institute of Environmental Science - Industrial Ecology, Van Steenisgebouw, Einsteinweg 2, 2333 CC Leiden, the Netherlands. Electronic address:
In this study, we compared the Sol-Char sanitation system with an Anaerobic Digestion (AD) system using Life Cycle Assessment (LCA) to evaluate their environmental impacts. Since both systems offer opportunities for human waste treatment and resource recovery, understanding their performance is crucial. This comparison aims to determine their environmental impacts while considering diverse factors, such as energy production and nutrient recovery.
View Article and Find Full Text PDFMolecules
January 2025
Orlen Unicre a.s., Revolucňí 1521/84, 400 01 Ústí nad Labem, Czech Republic.
The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!