Highlighting the risk of biases in radiomics-based models will help improve their quality and increase usage as decision support systems in the clinic. In this study we use machine learning-based methods to identify the presence of volume-confounding effects in radiomics features. Methods 841 radiomics features were extracted from two retrospective publicly available datasets of lung and head neck cancers using open source software. Unsupervised hierarchical clustering and principal component analysis (PCA) identified relations between radiomics and clinical outcomes (overall survival). Bootstrapping techniques with logistic regression verified features' prognostic power and robustness. Results Over 80% of the features had large pairwise correlations. Nearly 30% of the features presented strong correlations with tumor volume. Using volume-independent features for clustering and PCA did not allow risk stratification of patients. Clinical predictors outperformed radiomics features in bootstrapping and logistic regression. Conclusions The adoption of safeguards in radiomics is imperative to improve the quality of radiomics studies. We proposed machine learning (ML) - based methods for robust radiomics signatures development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2020.02.010DOI Listing

Publication Analysis

Top Keywords

radiomics features
12
machine learning
8
volume-confounding effects
8
radiomics
8
effects radiomics
8
improve quality
8
logistic regression
8
features
6
learning helps
4
helps identifying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!