Carbon nanotube supported sludge biochar as an efficient adsorbent for low concentrations of sulfamethoxazole removal.

Sci Total Environ

Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK. Electronic address:

Published: May 2020

A novel adsorbent of sludge biochar (SBC) and multi-walled carbon nanotube (CNT) composite was synthesized (CNT-SBC) to remove low concentrations of sulfamethoxazole (SMX) from water. The key factors of dose, contact time, pH and temperature were investigated. Higher dose of adsorbents provided more active sites for SMX adsorption. The effect of pH was due to the electrostatic interaction. Increasing the temperature was beneficial to SMX adsorption, which was a spontaneous endothermic process and the strength of the spontaneous increased with CNT supporting. As pseudo-second-order, Elovich, Langmuir and Freundlich models fitted the experimental data better, this suggested that both physisorption and chemisorption played vital roles during the adsorption process. In addition, liquid film diffusion was the main rate-limiting step of adsorption. Compared with SBC (5.43 × 10 μg g), CNT-SBC-1 (CNT:SBC = 1:2), CNT-SBC-2 (CNT:SBC = 1:4) and CNT-SBC-3 (CNT:SBC = 1:6) exhibited better adsorption performance with up to 2.35 × 10, 1.49 × 10 and 1.22 × 10 μg g at 25 °C, respectively. The characterization analysis demonstrated that the stronger adsorption capacity of CNT-SBC was mainly attributed to the pore filling, functional groups complexation and π-π interaction. In summary, as an efficient and environment-friendly adsorbent, CNT-SBC has promising potential for low concentrations of SMX and other emerging contaminants removal from water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137299DOI Listing

Publication Analysis

Top Keywords

low concentrations
12
carbon nanotube
8
sludge biochar
8
concentrations sulfamethoxazole
8
smx adsorption
8
adsorption
6
nanotube supported
4
supported sludge
4
biochar efficient
4
efficient adsorbent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!