Environmental pollution and energy scarcity is a major issue of the current scenario which forbear the progress of developing world. To overcome these problems towards a sustainable future, the utilization of sunlight by means of photocatalysis can be regarded as a best and suitable pathway. To validate this purpose, design and development of efficient heterogeneous photocatalyst for harvesting solar energy should be the major research concern for scientific community. In this regard herein, we have prepared a series of stable and efficient CoTiO/UiO-66-NH p-n junction mediated heterogeneous photocatalyst by hydrothermal method. The functionalised linker of UiO-66-NH provided an intimate interfacial contact with CoTiO by Co/TiON ionic interaction, as proved by HRTEM and XPS analysis. Moreover the inverted V-shaped Mott-Schottky plot confirmed the junction formation in the optimised CoTiO/UiO-66-NH material. In addition, EIS and PL analysis also provides sufficient evidence about the hindrance of active species recombination in composite as a result of p-n hetero junction. LC-MS characterization technique traces the assorted intermediate species produced in the course of photodegradation of Norfloxacin and confirms its complete degradation to corresponding CO, HO and NH by the optimised CoTiO/UiO-66-NH. The highest photo-catalytic activity obtained towards Norfloxacin degradation is 90.13% and H production is 530.87 µmol in 1 h. The enhanced photo-catalytic reaction follows Type-II p-n hetero junction charge transfer mechanism and thus, paves a new way to design MOF based heterojunction photocatalyst for diverse photo catalytic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.02.043DOI Listing

Publication Analysis

Top Keywords

norfloxacin degradation
8
heterogeneous photocatalyst
8
optimised cotio/uio-66-nh
8
p-n hetero
8
hetero junction
8
type-ii interband
4
interband alignment
4
alignment heterojunction
4
heterojunction architecture
4
architecture cobalt
4

Similar Publications

Clay-catalyzed ozonation of Norfloxacin - Effects of metal cation and degradation rate on aqueous media toxicity towards Lemna minor.

Chemosphere

January 2025

Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal (Québec), Canada, H3C 1K3. Electronic address:

Article Synopsis
  • Norfloxacin was ozonized in clay suspensions to study its toxicity on Lemna minor, which helps assess antibiotic impact in environments with clay.
  • The study found that norfloxacin causes toxicity in Lemna minor through oxidative stress, worsened by ozonation, affecting growth and chlorophyll levels.
  • Results indicate that the type of clay catalyst and the oxidation process influence the toxicity outcomes, revealing the potential formation of more harmful byproducts from the antibiotic.
View Article and Find Full Text PDF

In situ self-cleaning removal of emerging organic contaminants with covalent organic framework armed with arylbiguanide.

J Hazard Mater

January 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China. Electronic address:

An in situ self-cleaning covalent organic framework featuring arylbiguanide arms (Aryl-BIG-COF) was first developed to remove emerging organic pollutants such as propranolol (PRO) from water. The main breakthroughs addressed the scarcity of functional active sites, the impracticality of ex situ regeneration, and the rapid recombination of electronhole pairs in the application of COFs. Owing to the directional capture ability and electronic structure regulation of the arylbiguanide arms, the adsorption capacity and photocatalytic degradation rate of the newly synthesized COF increased by nearly four and seven times, respectively.

View Article and Find Full Text PDF

The rational design of heterojunction photocatalysts enabling fast transportation and efficient separation of photoexcited charge carriers is the key element in visible light-driven photocatalyst systems. Herein, we develop a unique Z-scheme heterojunction consisting of NiMoO microflowers (NMOF) and ZIF67, referred to as ZINM (composite), for the purpose of antibiotic degradation. ZIF67 was produced by a solution process, whereas NMOF was synthesized via coprecipitation with a glycine surfactant.

View Article and Find Full Text PDF

Phytol is a diterpene from the long-chain unsaturated acyclic alcohols, known for its diverse biological effects, including antimicrobial and anti-inflammatory activities. Present in essential oils, phytol is a promising candidate for various applications in the pharmaceutical and biotechnological sectors. This study aimed to evaluate the antibacterial and drug-potentiating effects of phytol against multidrug-resistant bacteria and to evaluate its properties: ADME and molecular docking.

View Article and Find Full Text PDF

Removal of mixed antibiotics from saline wastewater under intermittent electrical stimulation and alterations of microbial communities and resistance genes.

Environ Res

January 2025

Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China.

Antibiotics and antibiotic resistance genes (ARGs) are severe refractory pollutants in water. However, the effect of an intermittent electrical stimulation on the removal of antibiotics and ARGs from saline wastewater remains unclear. An anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) was used to treat tetracyclines (TCs) and quinolones (QNs) in saline wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!