Targeting the undruggable in pancreatic cancer using nano-based gene silencing drugs.

Biomaterials

Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia; Australian Centre for Nanomedicine, UNSW, Sydney, NSW, 2052, Australia. Electronic address:

Published: May 2020

Pancreatic cancer is predicted to be the second leading cause of cancer-related death by 2025. The best chemotherapy only extends survival by an average of 18 weeks. The extensive fibrotic stroma surrounding the tumor curbs therapeutic options as chemotherapy drugs cannot freely penetrate the tumor. RNA interference (RNAi) has emerged as a promising approach to revolutionize cancer treatment. Small interfering RNA (siRNA) can be designed to inhibit the expression of any gene which is important given the high degree of genetic heterogeneity present in pancreatic tumors. Despite the potential of siRNA therapies, there are hurdles limiting their clinical application such as poor transport across biological barriers, limited cellular uptake, degradation, and rapid clearance. Nanotechnology can address these challenges. In fact, the past few decades have seen the conceptualization, design, pre-clinical testing and recent clinical approval of a RNAi nanodrug to treat disease. In this review, we comment on the current state of play of clinical trials evaluating siRNA nanodrugs and review pre-clinical studies investigating the efficacy of siRNA therapeutics in pancreatic cancer. We assess the physiological barriers unique to pancreatic cancer that need to be considered when designing and testing new nanomedicines for this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2019.119742DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
16
pancreatic
5
cancer
5
targeting undruggable
4
undruggable pancreatic
4
cancer nano-based
4
nano-based gene
4
gene silencing
4
silencing drugs
4
drugs pancreatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!