S-nitrosylation affects TRAP1 structure and ATPase activity and modulates cell response to apoptotic stimuli.

Biochem Pharmacol

Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Center for Healthy Aging, University of Copenhagen, Denmark. Electronic address:

Published: June 2020

The mitochondrial chaperone TRAP1 has been involved in several mitochondrial functions, and modulation of its expression/activity has been suggested to play a role in the metabolic reprogramming distinctive of cancer cells. TRAP1 posttranslational modifications, i.e. phosphorylation, can modify its capability to bind to different client proteins and modulate its oncogenic activity. Recently, it has been also demonstrated that TRAP1 is S-nitrosylated at Cys501, a redox modification associated with its degradation via the proteasome. Here we report molecular dynamics simulations of TRAP1, together with analysis of long-range structural communication, providing a model according to which Cys501 S-nitrosylation induces conformational changes to distal sites in the structure of the protein. The modification is also predicted to alter open and closing motions for the chaperone function. By means of colorimetric assays and site directed mutagenesis aimed at generating C501S variant, we also experimentally confirmed that selective S-nitrosylation of Cys501 decreases ATPase activity of recombinant TRAP1. Coherently, C501S mutant was more active and conferred protection to cell death induced by staurosporine. Overall, our results provide the first in silico, in vitro and cellular evidence of the relevance of Cys501 S-nitrosylation in TRAP1 biology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2020.113869DOI Listing

Publication Analysis

Top Keywords

s-nitrosylation trap1
8
atpase activity
8
cys501 s-nitrosylation
8
trap1
6
s-nitrosylation
4
trap1 structure
4
structure atpase
4
activity modulates
4
modulates cell
4
cell response
4

Similar Publications

S-nitrosylation is a post-translational modification in which nitric oxide (NO) binds to the thiol group of cysteine, generating an S-nitrosothiol (SNO) adduct. S-nitrosylation has different physiological roles, and its alteration has also been linked to a growing list of pathologies, including cancer. SNO can affect the function and stability of different proteins, such as the mitochondrial chaperone TRAP1.

View Article and Find Full Text PDF

S-nitrosylation affects TRAP1 structure and ATPase activity and modulates cell response to apoptotic stimuli.

Biochem Pharmacol

June 2020

Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Center for Healthy Aging, University of Copenhagen, Denmark. Electronic address:

The mitochondrial chaperone TRAP1 has been involved in several mitochondrial functions, and modulation of its expression/activity has been suggested to play a role in the metabolic reprogramming distinctive of cancer cells. TRAP1 posttranslational modifications, i.e.

View Article and Find Full Text PDF

Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1) is a heat shock protein 90 (HSP90) molecular chaperone overexpressed in 60-70% human colorectal carcinomas (CRCs) and the co-upregulation of TRAP1 and associated 6-related proteins identifies metastatic CRCs with poor prognosis. Since the molecular mechanisms responsible for TRAP1 regulation are still unknown, the significance of gene copy number (CN) and the role of post-transductional protein modifications were addressed. gene aneuploidy accounted for 34.

View Article and Find Full Text PDF

S-nitrosylation of the Mitochondrial Chaperone TRAP1 Sensitizes Hepatocellular Carcinoma Cells to Inhibitors of Succinate Dehydrogenase.

Cancer Res

July 2016

Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark. Department of Biology, University of Rome Tor Vergata, Rome, Italy.

S-nitrosoglutathione reductase (GSNOR) represents the best-documented denitrosylase implicated in regulating the levels of proteins posttranslationally modified by nitric oxide on cysteine residues by S-nitrosylation. GSNOR controls a diverse array of physiologic functions, including cellular growth and differentiation, inflammation, and metabolism. Chromosomal deletion of GSNOR results in pathologic protein S-nitrosylation that is implicated in human hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!