Preparation of 1,4-linked α-D-glucuronans from starch with 4-acetamide-TEMPO/NaClO/NaClO system.

Int J Biol Macromol

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China. Electronic address:

Published: May 2020

Oxidized starch (oxStarch) is a major derivative of starch. In present study, 4-acetamide-TEMPO system was firstly applied to prepare specifically oxidized starch, homogeneous 1,4-linked α-D-glucuronan. The impact of oxidant amount, 4-acetamide-TEMPO amount and reaction temperature on the properties of products were investigated. The product structures were characterized with H NMR for degree of oxidation (DO), SEC-MALS for MW, MS for analysis of oxidized oligosaccharides, and in-source fragmented MS for analysis of oxidized polysaccharides. The results showed that the DO of oxStarches increased, but their MWs decreased with the raise of oxidant amount; higher 4-acetamide-TEMPO amount provided higher efficiency of specific oxidation of starch, in which the product has higher DO and MW; no significant difference have been observed between the oxStarches oxidized at 4 and 25 °C, but significant degradation was observed at 50 °C. In each product, having a MW distribution, the portion with smaller size has higher DO. While some unspecific oxidation was still observed observed on the second hydroxyl groups of sugar ring in the following order of priority, position 3 > 2 > 1 > 0.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.02.211DOI Listing

Publication Analysis

Top Keywords

oxidized starch
8
oxidant amount
8
4-acetamide-tempo amount
8
analysis oxidized
8
starch
5
oxidized
5
preparation 14-linked
4
14-linked α-d-glucuronans
4
α-d-glucuronans starch
4
starch 4-acetamide-tempo/naclo/naclo
4

Similar Publications

Porous spontaneously polarized ceramic-reinforced ozone micro-nano bubbles for efficient oxidation of starch: Reaction uniformity, physicochemical properties, and mechanism.

Food Chem

January 2025

School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China. Electronic address:

The preparation of food-grade oxidized starch with eco-friendly ozone (O) as oxidant is limited by low mass transfer and reaction efficiency. This study proposed a porous spontaneously polarized ceramic-reinforced O micro-nano bubbles (PSPC-OMNB) technology to prepare oxidized cassava starch (PSPC-OMCS). Meanwhile, reaction uniformity, physicochemical properties, and formation mechanisms were emphasized for comprehensive investigation.

View Article and Find Full Text PDF

Injectable oxidized high-amylose starch hydrogel scaffold for macrophage-mediated glioblastoma therapy.

Biomaterials

January 2025

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006 China. Electronic address:

Glioblastoma, characterized by rapid proliferation and invasiveness, is largely resistant to current treatment modalities. A major obstacle is the blood-brain barrier (BBB), which restricts the delivery of therapeutic agents as well as the infiltration of effective immune cells into glioblastoma. In this study, we developed an injectable oxidized high-amylose starch hydrogel (OHASM) to serve as a biomaterial scaffold for the delivery of macrophages and macrophage-polarizing drugs, aiming to bypass the BBB and enhance glioblastoma treatment.

View Article and Find Full Text PDF

Synthesis, characterization, anticancer, antibacterial and antifungal activities of nanocomposite based on tertiary metal oxide FeO@CuO@ZnONPs, starch, ethylcellulose and collagen.

Int J Biol Macromol

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Electronic address:

This study aimed to synthesize a nanocomposite based on tertiary metal oxide FeO@CuO@ZnONPs, starch, ethylcellulose, and collagen, as well as evaluate its biological activities. The prepared nanocomposites were characterized using physicochemical analysis, which included FTIR, XRD, and DLS. Additionally, topographical analysis using FI-SEM, EDX, mapping, HR-TEM, and SAED affirmed the molecular structure and nanosized of formulated nanocomposites.

View Article and Find Full Text PDF

Sodium bisulfite boosted exopolysaccharide production by Auxenochlorella protothecoides: Potential mechanisms harnessing HO signaling and carbon reallocation.

Bioresour Technol

January 2025

Department of Food Science and Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105 China. Electronic address:

Microalgal exopolysaccharides (EPS) possess significant functional benefits across various industrial sectors, but their commercial feasibility is constrained by inefficient synthesis and poorly understood synthesis mechanisms. This study found that 1.25 mmol/L sodium bisulfite promoted EPS accumulation to 224.

View Article and Find Full Text PDF

Effect of Ultrasound Treatment on Structural and Physical Properties of Native Maize Starch.

Plant Foods Hum Nutr

January 2025

Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina.

The focus of this work was to evaluate the differences between the thermal and mechanical effects generated by ultrasound waves on the properties of corn starch, which facilitate the subsequent enzymatic hydrolysis for the generation of porous starches. The results showed that both the thermal and mechanical effects have the capacity to disorganize/alter the structure of starch, impacting on its properties. Characteristics such as particle size, pasting and thermal properties (peak viscosity 1400-1800 cp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!